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clarity of the exposition and the precision, which leaves no room for uncer-
tainty. The style has sometimes been characterized as austere or severe. It
may, occasionally be also somewhat elliptic. The ideas are presented in a
most economical fashion and the author does expect the reader to be able to
fill in the more obvious details. This permits him to present the leading ideas
in an uncluttered way.

Finally, while the ultimate verdict on the work, like everything human,
belongs to history, those of us, who were fortunate enough to have known
Harold Davenport, cannot help remembering also the man. While much of
what he was—cultured, articulate, logical-is indeed reflected in his work, not
everything is. He was generous with his time and enjoyed (or at least seemed
to enjoy) showing Cambridge to his guests. While, to judge by his students,
his standards must have been very high, he was quite patient with the more
common brand of mankind and made genuine efforts to make himself
understood by the less sophisticated reader (see, e.g., his book “The Higher
Arithmetic”). In fact, this reviewer can recall only one outburst of impatience
(or indignation?) of Davenport: it was with mathematicians who claim
results, but never publish their proofs, either because they don’t have any, or
in order to keep their methods as private property of a small group of close
collaborators. No names were named.

The reviewer wants to take this opportunity to thank Professor D. J. Lewis
for a very helpful letter concerning Davenport which confirmed many and
completed some of the reviewer’s own recollections.
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In the early sixties, stimulated by the discoveries of M. P. Schiitzenberger, a
number of researchers at the University of Paris contributed to a new
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mathematical approach to the theory of Kleene’s regular languages, to
Chomsky’s context-free languages, and to various other combinatorial ques-
tions based on the idea that power-series in noncommuting variables with
coefficients taken in a ring or a semiring could play a key role in these fields.
A number of simple observations supported this idea, and the relevant one in
this review is the fact that the language L generated by a context-free
grammar is actually the support of a power-series directly related to the
production rules of L. For example, the grammar ¢ — o0, 6 — asb, 6 — ab
produces from the axiom o a certain set of words on the letters a and b, which
is exactly the support of the solution X of the equation X = X2 + aXb + ab
in the semiring of power-series N<a, b). The reader may even verify that the
coefficient of (ab)® in the power-series X is 2; this is also the number of
distinct ways of obtaining (ab)® from o in the grammar above (ambiguity
degree). This is the kind of remark that justifies an approach to regular and
context-free languages within the framework of the rigorous formalism of
power-series.

After almost twenty years of work a number of deep results have been
obtained, mostly by the French School, with a limited impact on computer
scientists elsewhere, even though S. Eilenberg’s first volume of Automata,
Languages and Machines (dealing with regular languages) appeared in 1974.

A. Salomaa and M. Soittola have successfully completed the difficult task
of writing a coherent and comprehensive textbook reporting on the major
developments in the theory of power-series related not only to regular and
context-free languages, but also to stochastic languages and Lindenmayer
systems.

There are essentially two types of problems that arise when adopting a
power-series approach to the theory of languages. Problems of the first type
study the extensions to power-series of the classical results on languages that
have originally been obtained through finite state automata, or pushdown
acceptors, or grammars. For example, Kleene’s theorem says that the class of
all the languages accepted by finite automata (recognizable languages) coin-
cides with the smallest class containing the finite languages and closed under
the Boolean operations, product, and the star operation (rational languages).
A generalized form of this result is established by introducing the appropriate
concept of recognizable power-series (matrix representations of power-series),
and the concept of rational power-series (solutions of linear equations in
power-series semirings). What is gained in the generalizing process might be
illustrated briefly by the following example. It is well known that the
intersection of a regular language and a context-free language is context-free;
the power-series version of this states that the Hadamard product of a
rational power-series and an algebraic power-series is an algebraic power-
series. This last result generalizes a classical theorem of Jungen on power-
series in one variable, and thus provides a surprising link between classical
analysis and the theory of languages.

The earliest and perhaps the most important results of this first kind were
obtained by Schiitzenberger between 1959 and 1962 (generalization of
Kleene’s theorem, matrix representations of power-series, systems of equa-
tions, generalization of Jungen’s theorem, construction of reduced representa-
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tions). These results were further developed in a joint-paper with Chomsky
that also suggests the idea of rational transduction (under rational transduc-
tions the Dyck languages generate all context-free languages). After the works
of Elgot and Mezei 1965, Shamir 1967, the first global presentation of the
theory of context-free languages from a power-series point of view was
written by M. Nivat in 1968, formally introducing power-series transductions
and studying their relationship to representations. The work of M. Fliess in
1972, brought further clarifications on the construction of the reduced repre-
sentation of rational power-series, introduced and developed the use of
Hankel matrices for these series. Faithful transductions and cones of power-
series were then studied by G. Jacob (1975), and Jacob’s work on series with
a finite number of distinct coefficients led him recently to show that the
finiteness of a finitely generated linear semigroup is decidable.

Problems of the second kind analyze more specifically the passage from
languages to power-series and vice-versa. When writing a language as a
power-series, the natural domains of the coefficients are either the Boolean
semiring {0, 1}, or the semiring N. This leads to questions “a la Fatou”; for
example: Is a Z-rational power-series with coefficients in N an N-rational
power-series (Soittola proved that the answer is yes for series in one variable).
The main contributions in this direction are by Schiitzenberger 1961, Berstel
1972, Fliess 1972, Soittola 1976. The Skolem-Mahler-Lech theorem on C-ra-
tional power-series with infinitely many 0 coefficients has served as a source
of inspiration for Fatou problems in one variable; in several variables most of
the results deal with Fatou extensions of a semiring to another semiring but
there are serious difficulties when passing from a semiring to a ring of
coefficients. As observed by the authors this approach leads to the arithmeti-
zation of language theory, and also provides interesting links with classical
analysis.

In addition to the topics discussed above the book contains a power-series
approach to stochastic languages (Turakainen 1969, Fliess 1972, Soittola
1976), a study of the concept of density of a regular language (Berstel 1972)
and of growth functions of Lindenmayer systems DOL and PDOL (Szilard
1971, Salomaa 1976, Soittola 1976).

The book is divided into three parts: rational series, their applications, and
algebraic series. Each chapter contains an ample choice of exercises. The
proofs are clearly presented with frequent indications as to how and where
the hypotheses are needed. With the exception of a few results quoted without
proof, the book is self-contained for the reader who is acquainted with the
basics of automata theory and formal languages. The historical and biblio-
graphical remarks have been gathered at the end, which might eventually
leave the reader with a feeling of haziness regarding the general progression
of ideas. The list of references could be enriched by adding at least [1] and [2]
below ([2] shows how polynomials appear in the theory of finite automata),
and other applications of power-series in combinatorics, graph theory, coding,
bilinear dynamic systems, ..., could have been at least mentioned by the
authors (cf. [3]).

Apart from the minor points indicated above, this is a solid textbook that
should (1) contribute to establish the fact that the theory of automata and
context-free languages leads directly to abstract problems in noncommutative
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and linear algebra (2) provide theoretical computer scientists with adequate
and powerful tools for future research.
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Panorama des mathématiques pures. Le choix bourbachique, by Jean Dieu-
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What is mathematics? According to one often suggested definition,
mathematics is what mathematicians do, and the answer, therefore, is a
function of time. A more humble question is “what is mathematics now?”,
and even that is partly ambiguous. Mathematics comes in several packages,
described by different labels. The subject of the book before us is not the
large, family-sized package labelled “the mathematical sciences”, which in-
cludes, for example, hydrodynamics, statistics, numerical analysis, and com-
puter science. The subject is pure mathematics only; the stated purpose of the
book is to give the student at the threshold of research a panoramic view of
the pure mathematics that is alive today.

Another way of describing the subject is offered in the subtitle (and
explained in more detail in the introduction): the book is about Bourbaki’s
choice. Bourbaki is a pseudonymous society of French mathematicians who
for forty years have been publishing a systematic collection of expository
texts, proceedings of seminars, and ex cathedra dicta. How did they decide
which parts of mathematics merited attention and which ones did not? What
principles have been guiding their choices? They have never answered the
question in public, and the author (one of the charter members of the society)
says that the only way to find the answer is to examine the results of the
choices and to infer from the evidence at hand what must have motivated
them. The author was for many years one of the chief Bourbaki scribes, but
he insists that his conclusions are personal and do not represent the official
Bourbaki point of view.

Be that as it may, what in fact is Bourbaki’s choice? To answer the
question, consider what every (almost every?) mathematical theory is like. It
begins with a very special problem, or so the study of history teaches us, such
for instance as the duplication of the cube. What happens next? Answer:
there are several possibilities.

I. It could happen that efforts to solve the problem lead nowhere, and the
theory is still-born; as examples consider the determination of the Fermat
primes and the irrationality of Euler’s constant.



