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DEGREE OF A SMOOTH MAP 

BY DAVID EISENBUD* 

The singularities of mappings have attracted a lot of attention lately, 
perhaps partly because the field touches so many others. However, many 
elementary problems still remain. I was attracted to the subject myself by a 
problem shown me by Harold Levine, which I would like to describe. Levine 
and I worked on this problem together, and the new results that I will discuss 
come from our joint work, mostly contained in [Eisenbud-Levine]. 

Topological degree. The problem concerns the computation of the degree of 
a continuous map 

between two oriented compact manifolds M and N of the same dimension n, 
written deg/. One way to think of the degree of ƒ is as the number of 
/-preimages of a point in the target manifold N. For example, if ƒ is the map 
given below by "radial projection" from the outer circle to the inner one, 

(the arrow heads on 

M and N represent 

the orientations) 

then every point has two preimages, so the degree of the map is 2. 
Of course, care must be taken with maps like the one in the following 

picture, where again ƒ is given by "radial projection" from the outer circle to 
the inner: 
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Here point A has 1 preimage Ax so the map ought to have degree 1. But point 
B has 3 preimages! In order to reduce this number to 1, we count a preimage 
point 2?, as -hi if the map ƒ preserves the orientation near Bi9 and — 1 if the 
map ƒ reverses the orientation near Br Thus Bx and B3 count positively and 
B2 counts negatively, for an algebraic total of 1 preimage; again, deg ƒ = 1. 

What about the preimage of C in Nl It consists of the 2 points C, and C2. 
Near C„ ƒ looks the same as near Bx or Ax so Cx can reasonably be counted 
as +1 preimage. Therefore, C2 had better count as no preimages at all! This 
is not so unreasonable, since C2 may be thought of as the point where the 
positive and negative preimages B2 and B3 coalesce as B moves to C in N. 

The above suggests the feasibility of defining the degree rigorously by 
"appropriately" counting preimages, but it is perhaps reassuring to recall that 
there is a definition which avoids all such finagling. This definition relies on 
the fact that the «-dimensional integral homology of an oriented compact 
connected «-manifold is canonically isomorphic to the group Z of integers. 
Thus ƒ induces a map 

UZ^Hn(M)^Hn(N)^Z. 

Any map from Z to Z is multiplication by some integer, and we may define 
deg ƒ as the integer thus associated to ƒ*. This definition even shows that 
homotopic maps have the same degree (some of the significance of the degree 
is the frequency with which the converse is true, as in the case, for example, 
when N is the «-sphere). 

Even given this global definition of the degree, it is still important for 
computations and applications to give a definition of the degree by counting 
preimages-that is, to give a definition of the local degree degx off at a point 
x E M which is isolated in/"* lf(x), in such a way that 

d e g / = 2 d e g j (*) 

for any y E N such that /" l(y) is a finite set. While it is not hard to do this in 
the above generality (see, for instance, [Milnor (2)]), a more illuminating 
description is possible if we restrict ourselves to a smaller class of maps and 
manifolds, so we will henceforth assume that M and N are differentiable 
manifolds, and that ƒ is continuously differentiable. Since we only need to say 
how to count a single preimage, x, we may (by choosing coordinate 
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neighborhoods near x and ƒ(*)), assume that ƒ is actually a map from a 
neighborhood U of the origin in Rrt to Rn carrying the origin 0 in U to the 
origin, and that x * 0. We will indicate that ƒ is such a map by writing 

/:(R",0)->(R",0). 

Choosing coordinates in the target, we may regard ƒ as given by n 
component maps/,, . . . , ƒ„ : (R", 0)->(R, 0). If we now choose coordinates 
X{J..., Xn in the source, we may define the Jacobian determinant 

% = det(3/;./a*,), 

which we regard as a function §> : (Rw, 0) -> R. Any choice of an ordered 
system of coordinates implies the choice of an orientation, and if the choice 
of coordinates in source or target is changed in a way that changes the 
orientation, for example by interchanging two of the coordinates, the function 
% will change sign. Thus ^ may be regarded as expressing information on the 
relative orientations of the source and target of/. 

The degree at regular and singular points. Recall that a point x in the source 
of ƒ is said to be regular for ƒ if \{x) =£ 0, and that in this case the 
nonsingular linear mapping given by the matrix 

is topologically equivalent to ƒ near 0, by the inverse function theorem. Since 
a nonsingular linear map preserves or reverses the orientation of its source 
according as its determinant is positive or negative, we must have 

dego/=sgn£(0) 

if 0 is a regular point for/. It is not hard to show that this definition is "right" 
in the sense that, if we return to a map ƒ of compact orientable manifolds, 
formula (*) will be true for any y in the target all of whose preimages are 
regular points of/-that is, for any y which is a regular value off. 

If 0 is not a regular point of/, but is isolated in the set/_1(0), then we can 
try to define the degree at 0 by moving slightly away from 0 to a regular 
value. Such regular values near 0 always exist (by the theorem of Sard and 
Brown, almost every point in the target is a regular value), so we may make 
the above precise by saying that there is a small neighborhood V of 0 in the 
source of ƒ so that the number 

2 sgn fa) (**) 
xevnf~l(y) 

is independent of y, so long as y is a regular value of ƒ and is sufficiently near 
0. Clearly, degoƒ must be this number if formula (*) is to remain true for 
singular as well as regular values j> (the reader who wishes to see these things 
in more detail should consult [Milnor, (1)]). 

It is clear from the above that if two maps ƒ, g: (R", 0) -» (Rn, 0) agree on 
some small neighborhood of 0, then dego ƒ = degog. If we identify mappings 
that agree on sufficiently small neighborhoods of the origin to form equiva
lence classes, called the germs at 0 of the mappings, the above remark may be 
restated thus: The number dego/ depends only on the germ of ƒ at 0. 



754 DAVID EISENBUD 

However, the definition of dego(/) by (**) that we have adopted really 
depends on the choice of a representative mapping ƒ for the germ, since it 
depends on the action of ƒ at points other than 0. This brings me, at last, to 
the problem I want to describe: 

Can one calculate the degree of a germ without choosing a representative 
mapping! 

It is worth remarking that Levine and I were not the only ones to consider 
this problem; Arnold seems to have posed something like it to Zakaljukin, 
who succeeded in showing that the degree of a map could be deduced from 
the values of certain polynomials, applied to finitely many of the coefficients 
in the Taylor series of functions representing ƒ [Zakaljukin]. His proof, 
however, does not construct these polynomials! 

Before trying to solve our problem, we must first consider what invariants 
of the germ of ƒ are available. The most promising for our purpose seems to 
be Mather's "local ring". 

The local ring of a germ. I will now change notation a little, writing ƒ for the 
germ of a map (Rn, 0) -> (R", 0), and deg ƒ for the degree of the map at 0 (the 
only point at which ƒ has a value!). As before, when we restricted ourselves to 
differentiable germs, there will be a payoff if we add some hypotheses on ƒ. 
For the moment, we simply assume that ƒ is infinitely diff erentiable. 

To attack the problem above, we can make use of an invariant of the germ 
ƒ which has been studied recently by John Mather, presumably because of its 
close analogy with a venerable construction in algebraic geometry. This is the 
local ring Q (ƒ) off, defined by 

Ö( / ) = C-(RW ,0)/ ( ƒ , , . . . , ƒ„), 

where C^ÇR", 0) is the algebra of germs at 0 G R" of infinitely diff erentiable 
real valued functions, and (f{9... , ƒ„) is the ideal of C°°(Rn, 0) generated by 
the components f{9 . . . , ƒ„ of the germ/. 

The construction of Q(f) does not require a choice of representative 
mapping for/, and it turns out that Q{f) does not depend on the coordinates 
which were chosen to define the componentsƒ„ . . . , ƒ , , either. We will try to 
calculate the degree off in terms of (?(ƒ). 

But does Q(f) contain enough information? That is, is deg/ really an 
invariant of Q (/)? Of course, Q (/) does not contain any information on the 
relative orientation of the source and target of ƒ, so the best we can hope is 
that Q(f) contains enough information to calculate the absolute value |deg f\. 
I don't know whether it does or not, but one should perhaps suspect that it 
doesn't, since deg/ is defined only if 0 is isolated in/_ 1(0) (for some and 
hence every representative mapping for ƒ), but Q (ƒ) is always defined, and 
there is to my knowledge no way of telling from Q(f) whether or not 0 is 
isolated in/ _ , / (0) . Thus we had better look first for some condition on Q{f) 
that will guarantee that deg ƒ is defined. 

Finiteness. The best choice for such a property seems to jiniteness: 

DEFINITION. The germ ƒ is finite if dimR Q(f) < oo. 
Finiteness is a good property because, on the one hand, nearly all map 
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germs have it (in fact, Tougeron has shown that the finite germs form the 
complement of an algebraic set of infinite codimension in the space of all C00 

germs), while on the other hand it guarantees a close connection between 
Q(f) and the properties of representative maps of/, as the following simple 
proposition of Mather's shows. 

PROPOSITION 1 [MATHER]. Let f and g be two C00 mappings R^-^R" 
carrying the origin to the origin, and suppose that their germs are finite and 
satisfy Q(f) ^ Q(g) as algebras. Then there exists a neighborhood U of the 
origin in the source, a diffeomorphism o of U, and a smooth family of linear 
transformations Hx: Rn -* R" of the target, parametrized by points x in U, such 
that H0 is the identity and that for all x E U, 

g(x) - Hx(f(a(x))). 

This proposition, which almost says that ƒ and g are related by changes of 
coordinates in the source and target, has as an easy consequence the fact that 
when ƒ is finite, deg/ is indeed an invariant, up to sign, of the algebra (?(ƒ). 

COROLLARY. Iff, g: (Rn, 0) -> (Rn, 0) are finite germs, and if Q{f) « Q{g), 
then d e g / * ±degg. 

IDEA OF PROOF. By the proposition, representative mappings ƒ and g satisfy 
g(x) = Hx(f(o(x))) near the origin. Hx, being near the identity, can be 
ignored in computing the degree [Milnor (2), p. 111]. Since the degree of a 
composite map is the product of the degrees of the factors, we get 

deg g = deg(/) • deg o = ±deg ƒ, 

since o, being a diffeomorphism, has degree ± 1. 
What is the invariant of Q ( ƒ) which gives the degree of ƒ ? This was the 

problem with which Levine tempted me into this subject. Of course the first 
thing we did was to look at some examples, hoping eventually to guess a 
pattern. I would like to show the reader some of the more illuminating of 
those examples. 

Another look at Q (ƒ). It will be helpful in handling the examples to have a 
different expression for Q (ƒ). To derive this, we use a ring homomorphism 
about which we teach our students in elementary calculus, the Taylor expan
sion 

Taylor: C00 (R", 0) ->R[|x„ . . . , xn\], 

a homomorphism from the ring of infinitely differentiable germs to the ring 
of formal power series. The maximal ideal of C°°(R", 0), the set of germs of 
functions vanishing at 0, is generated by the coordinate functions * „ . . . , xn. 
(Proof: If /(O) - 0, then ƒ * ^n

xxigi{x), where gi(x) * 
/J(9/9*/)ƒ(/*!, . . . , txn)dt) From this and the fact that C°°(Rn, 0) contains 
the germs of polynomial functions, it follows that if Q(f) is finite 
dimensional, then the Taylor expansion induces an isomorphism 

Q(f)«*[\xv....xl,\]/ ( ƒ „ . . . , ƒ„), 

where we have written ƒ also for the Taylor series of the germ of the /th 
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component function of/. This expression for Q(f) shows how close we are to 
the context of algebraic geometry. (In fact, we could even have begun by 
replacing ƒ by a polynomial mapping: if, for each i, f f agrees with ƒ up to a 
sufficiently high order, then j] - j? G (*„ . . . , xn\fx, . . . , ƒ„), so by 
Nakayama's Lemma, 

(ƒ„ . . . Jm)R[\xl9..., *„|] = (ƒ,',... ,fm)R[\xl9..., xn\], 

whence Q(f) = Q(f). It is not hard to show directly that deg ƒ = deg ƒ'.) 
EXAMPLES. We will begin with the case where the source and target of ƒ have 

dimension n = 1. Since we have seen that |deg/| depends only on Q(f) = 
R[|^|]/(/)> and since every factor ring of the power series ring in one variable 
has the form R[|Z|]/(Ar/c) for some k, we will see all the one dimensional 
possibilities simply by looking at the maps 

f(X) = X\ for which Q(f) = R[ |Jf | ] / ( j r*) . 

There are two kinds of behavior: 
(i) k even, ƒ can be described as a "projection from its graph", as in the 

following picture: 

The degree in this case is 0. To see this, note for example that any e > 0 is 
a regular value which has 2 preimages; ƒ preserves the orientation near one of 
them and reverses it at the other. (The lazy will prefer the argument that - e 
has no preimages at all-and is thus automatically regular.) 

(ii) k odd. With the same scheme, ƒ "looks" like: 

f 
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Clearly deg ƒ = ± 1, the sign depending on the orientations chosen. 
Finally an example which is slightly less banal, and so perhaps more 

helpful: 
(iii) Identify R2 with the complex line C1, and consider the map/: 

tf-C^C1 = R2 

ƒ 

where /,(z) = z2. The two components of ƒ (with respect to the basis 1, 
V^nr for C) are X2 - Y2 and 2AT, so 

Ö( / ) = R[ |* , r | ] / ( * 2 - Y2,2XY). 

As a basis we may take the classes 

Ï, X, F, X2 + Y2, 

where " denotes reduction modulo (X2 - Y2, 2XY). The multiplication is 
given by 

o = Î T = x-x2 + r2= F-z2 + r2 = (;r2+ r2)2, 

(*)2 = (F)2 =4x2 + Y2. 
Using the same scheme as in (i), we may picture ƒ as a projection; it is the 

familiar two-sheeted covering map of C, ramified over 0. 

From the picture we see that a regular value near 0 has 2 prcimages (any 
nonzero complex number has 2 square roots!) and that ƒ preserves the 
canonical orientation (1 first, then V — 1 ) of C near each of these. Thus with 
that orientation, deg ƒ = 2. 

Other powers of z may be treated similarly. It turns out that, if /,(z) * zk, 
then dim Q(f) = k2, while deg ƒ = k. 

The results of Serre and Berger. In examining these examples, Levine and I 
had in mind an observation of Serre [Bass] and a theorem due essentially to 
Berger ([Berger]-see also [Scheja-Storch]) which throw some light on the 
structure of the algebra Q (ƒ). These results-or rather, their applicable special 
cases-may be summarized thus: 

PROPOSITION 2. Iff: (Rn, 0) -» (Rn, 0) is a finite germ, then the algebra Q(f) 
has a unique minimal nonzero ideal. This ideal is one-dimensional over R, and is 
spanned by the residue class J of the germ f of the Jacobian off 

For instance, in examples (i) and (ii) above, / is the class of fat*"1, while in 
example (iii), J is 4{X2 + y2). Using these facts about the structure of Q(f), 
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it is natural to introduce a symmetric bilinear form on Q ( ƒ), whose properties 
reflect the algebra structure, as follows: Choose a real-linear functional <p: 
Q(f) -+ R, and let (a, 0}^ =•= <p(ab) for a,b E Q{f). Since by the proposition 
J ^ O E (?(ƒ), we may choose <p to take a nonzero value on / , say <p(J) = 1. 
The statement that J spans the unique minimal nonzero ideal of Q(f) is 
easily seen to imply that < , ) v is nonsingular. (Proof: If (a, (?(ƒ)) = 0, 
then <p(aQ(f)) = 0. Since dimR Q(f) < oo, the ideal aQ(f) contains a 
minimal ideal, and thus by the proposition, contains J, unless a = 0. Since 
<p(J) ^ 0, we must have a » 0.) 

Of course real symmetric bilinear forms are much simpler than algebras; 
nonsingular ones possess, aside from the dimension of the space on which they 
are defined, a single invariant, called the signature, which we will abbreviate 
sign: If we express the form as a diagonal matrix with respect to some 
orthogonal basis, the signature is the sum of the signs of the diagonal entries 
of the matrix. 

The Main Theorem. After some computations Levine and I were convinced 
of the likelihood of the following result, which we later succeeded in proving: 

MAIN THEOREM. Let ƒ: (R", 0) -» (R", 0) be a finite map germ, and let <p: 
Q ( ƒ) -» R be a linear functional whose value on J, the class of the Jacobian, is 
1. Then 

deg/=sign<,>„. 

Note that there is no more ambiguity here in the sign of the degree; we 
have used the class of the Jacobian to recover this information. 

With a bit of algebra, it is possible to deduce from this a result which 
allows one to deduce |deg f\ directly from Q(f): 

COROLLARY. Let f: (R", 0) -> (Rn, 0) be a finite map germ. Let I in Q(f) be 
an ideal which is maximal with respect to the property 12 = 0. Then 

| d e g y j = d i m R Ö ( / ) - 2 d i m R / . 

SKETCH OF THE PROOF OF THE COROLLARY. I turns out to be a maximal 
isotropic subspace; that is, a subspace of Q(f) maximal with respect to the 
property (ƒ, 1}^ * 0. (Since <ƒ, I > * <p(I2) x <p(0), it is obvious that I is 
isotropic. That I is maximal among isotropic subspaces is slightly more 
complicated.) It follows that Q (ƒ) breaks up as a direct sum of subspaces, of 
the form 

ÖC0-/ e / * e D, 

where I* is the dual of / with respect to ( , > , and where the restriction of 
( , ) to D is (positive or negative) definite. Thus 

lsi8n < > >*| " d imR Q ( /) " d imR I ~ d imR 7* 
« d i m R Ö ( / ) - 2 d i m R / . 

To check the Corollary against examples (i) and (ii), note that in the first 
case the maximal ideal I with I2 * 0 is xk/2Q(f), which has just half the 
dimension of Q(f), while in the second case that ideal is xk+l/2Q(f)9 which 
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has dimension (k - l)/2. Thus for case (i) the Corollary gives |degf\ = 0, 
and in case (ii) it gives |deg f\ =•= l. 

With example (iii), we will illustrate the Main Theorem. We may define <p 
by choosing its values on a basis of (?(ƒ), for example as: 

<p(i)-<p(X)-<p(Y) = 0, 

<p{X2+ Y2) - 1/4, 

(Here the value of <p(X2 + Y2) is chosen to make y(J) * <p(4 X2 + Y2) « 
1) 

With this choice the bilinear form may be easily computed as 

<a, b}v = q>(ab) 

1 

X 
Y 

X2 + Y2 

1 

0 
0 
0 

1/4 

X 

0 
1/8 
0 
0 

Y 

0 
0 

1/8 
0 

X2+ Y2 

1/4 
0 
0 
0 

Since (,/4 ^
4) becomes ( x(f ,/4) with respect to an orthogonal basis, this 

form has a matrix 

f —1/4 0 0 0 ] 
0 1/8 0 0 
0 0 1/8 0 

[ 0 0 0 1/4J 

with respect to an orthogonal basis of Q(f), so the signature is 2, the same as 
the degree of/! Thus the Theorem and its Corollary are clearly true. 

IDEA OF THE PROOF OF THE MAIN THEOREM. TO prove the Main Theorem, 
we must replace the idea of "counting (appropriately) the preimages near 0 of 
a regular value y as y goes to 0" by some purely algebraic notion. 
Fortunately, this sort of problem is well understood in algebraic geometry, 
and we need only borrow the right tools. To avoid the introduction of sheaves 
of germs of analytic functions or (almost equivalently) of étale covers, we will 
assume that ƒ is given by n polynomials ƒ„ • . . ,ƒ„ such that 

(1) The map of polynomial rings 

B = R[Yl9...9YH]?>R[Xl9...fXm]-A 

sending Y, H> MX) makes A into a finitely generated 5-modulc, and 
(2) The only preimage of 0 under the map 

fc: c
1 -* Cn 

given by the same polynomials ƒ,, . . . ,ƒ„ is 0. 
Each of Conditions (1) and (2) is somewhat stronger than the statement 

that the germ of ƒ at 0 is finite. Note that the restriction to the case of 
polynomials is not serious, by Proposition 1. Furthermore, we could guaran
tee that Condition 1 holds, without affecting Q(f) or dego/, by replacing 
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each ft by ft + xs
N

9 when AT is a sufficiently large integer. But we do not know 
whether it is always possible to replace ƒ by a mapping for which Condition 
(2) is satisfied without changing Q(f). Thus the general case of the Main 
Theorem requires for the moment either the extra machinery already 
mentioned, or a circuitous argument that uses the polynomial map but 
separates the preimages near zero from those far away. 

With these hypotheses, the notion of the preimage of a point y = 
(r„ . . . , rn) in the target Rn has its algebraic analogue in the algebra 

Qy(f) = R [ * „ . . . , Xn}/ (ƒ, - r„ . . . ,fn - O 

= R[X]/(Yl - r „ . . . , Y„-rn)R[X] 

called the algebra of the fiber of F over b. It is not difficult to show that the 
local ring of the germ of /a t 0, Q{f) in our old notation, is just Q0(f) in our 
new notation. 

In fact the existence of a map Q(f)-± Qoif) is clear, since we may take 
germs of polynomials to represent the elements of Q(f) = 
C°°(R", ( )) / (ƒ, , . . . , ƒ„); the fact that the map is an isomorphism follows from 
the finiteness of ƒ and from Condition (2). 

What about the notion of y "going to 0"? This is expressed by the map F of 
polynomial rings! For F contains, simultaneously, data for constructing all 
the fiber algebras Qy(f). 

If now y is a regular value of/, then it is easy to see that Qy (ƒ) will have the 
form 

RX - • • XRX e;( /) (*) 
where the different copies of R correspond to the points Xl9 . . . , Xs, the 
preimage ƒ "^O), and Qy\f) has only complex residue class fields (corres
ponding to nonreal pairs of complex conjugate preimages of y under/c). 

Our hypotheses 1 and 2 imply that the x( all go to 0 as y goes to 0, so that 
the degree of ƒ at 0 will be expressed by the formula 

s s 

d e g / = 2 degxf. = 2 sgn £(*,.). (**) 
/ - i i - i 

The only thing now lacking for a proof of the Main Theorem is a smoothly 
varying family of bilinear forms ( , > on Qy(f) such that < , ) 0 = ( , > and 
that for a regular value >> with preimages xu . . . , xs, < , ) will have signature 
equal to the sum in (**); for if < , ) changes smoothly, it will remain 
nonsingular, and thus have constant signature, for^ near 0. 

Using bases, it is easy to define a family of forms ( , }y extending 
( ' )o = ( > )<p' b u t unfortunately there seems to be no direct method for 
computing the signatures of ( ) . 

An idea from number theory. A way out of this dilemma is provided by an 
idea that was, in a special case, familiar to number theorists in the last 
century. It was extended to the case we need by R. Berger [Berger] in 1962; 
since then it has become a part of the Grothendieck duality machine (under 
the general name of "residue") [Beauville]. To see it in its primitive form, let 
us return to the case n = 1. 
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Consider the extension of polynomial rings B = R f y ^ R l X ] = A9 where 
Y goes to ƒ (X\ as an analogue of an algebraic extension of the integers 
Z c 6 where 0 is the ring of all algebraic integers in some number field K, a 
finite extension of the rational numbers. In our case, A is generated as a 
5-algebra by a single element X, so we will assume that 0 = Z[a] for some 
algebraic integer a. Let a satisfy the minimal polynomial equation 

g(a) = am + r{a
m~l + • • • + rm = 0, r, G Z. 

Note that X satisfies the equation f(X) - 7 = 0, where ƒ has coefficients in 
R c B9 so the analogue of g in our polynomial-ring case is f(X) — Y9 

considered as a polynomial in X with coefficients in B = R[ Y]. Note that, as 
such, f(X) - F differs from f{X) only by the term Y which is "constant" 
(that is, in B). 

In the number theoretic case, a primary concern is the factorization in 0 
(perhaps into prime ideals) of primes in Z, and in this a special role is played 
by prime ideals P of 0 whose squares contain primes of Z. The classical 
result (due to Dedekind) is that P contains the square of a prime integer if 
and only if P contains the element g\a)9 where g' denotes the usual deriva
tive. The route to a proof of this fact passes by an explicit computation of the 
Z dual of 0 ; it turns out that the Z-linear maps from 0 to Z are exactly the 
maps 0 3 r -* Tr(rs/g'(d)) for arbitrary s E 0, where Tr denotes the trace 
map from the quotient field A' of 0 to the field of rational numbers Q. (Tr(/?) 
may be defined as the trace of the (Minear transformation of K given by 
multiplication by /? on K.) Note that, while Tr carries 0 to Z for more or less 
trivial reasons, it is not obvious that the trace of rs/g'(a)-which is in K but 
not necessarily in 0-will be in Z! A beautiful exposition of the proof of the 
above part may be found in Serre's book [Serre, Chapter HI]; suffice it here 
to say that the proof rests on another result that we often teach to our 
calculus students, Euler's formula for "partial fractions": 

_ I _ = v ! . 

In a sense, the heart of this number-theoretic development is the 
construction of the distinguished Z-linear functional T: 0 ~> Z: r h 
Tr{r/g\a)) (depending, of course, on the choice of a) and the statement that 
every functional 0 -» Z is in some sense a multiple of T. 

In our case, R j y j ^ R ^ ] , we can get a distinguished R[y]-lincar 
functional by an analogous formula: 

T:R[X]-*R[Y]:p(X) H> Tr 

where Tr is now the trace associated with the field extension R( Y) c R(^), 
and where we have used ƒ \X) instead of the derivative of the analogue of g9 

because ƒ differs from that analogue by a constant in the appropriate sense. 
Berger's remarkable discovery was that, although no one knows an ana

logue of Euler's formula for functions of many variables, the above functional 
does have natural generalization to the case of many variables. If 

P(X)\ 
ƒ' (* ) / 
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R[rv...9rm]Z>*[xl9...,xm] 
is a map satisfying our Condition (1) of finitcness, then the functional is 
obtained merely by substituting the Jacobian for the derivative in the above 
definition of T> That is, if 

is the Jacobian determinant, then there is an R{ T , , . . . , KJ-linear functional 

T:R[Xr - - X„]->R[Yi,...,Yn]:p(X)y+ J T ^ ^ - } 

and as before, every such functional is a multiple of T in an appropriate 
sense. 

Completion of the proof of the Main Theorem. To finish the proof of the 
Main Theorem, one first notes that T induces an R-linear functional Qy(f) 
-*r>R for each y, by reduction modulo the ideal (F, - r,, • . . , Yn - r„) 
where the rf are the coordinates of y: More precisely, 

^ = r ® R t r 1 R : R [ x ] ® R t r 1 R [ r ] / ( r ! - r l , . . . , r n - o 
- R [ y ] ® - K l R [ y ] / ( y I - r p . . . , y l l - r l l ) 

- R . 
Also, T0(J) = Tr($/£) = Tr(l) = k is the degree of the field extension 
R(X)/R(Y), a positive integer* Thus <p0 = (l/k)T0 satisfies the hypothesis of 
the Main Theorem. 

Of course it is an obvious consequence of the Main Theorem that the 
signature of the form < , ) does not depend on <p so long as <p(/) = 1. But 
this is easy to prove directly; for if <p' is another functional with <p'(J) = 1, 
then <pt = t<p + (1 - t)<p' is a whole 1-parameter family of such functionals. 
By Proposition 2, { , ) is nonsingular for every f, so the signature is 
independent of f. Thus it suffices to prove the Main Theorem for <p = <p0 = 
(l/k)T0. 

Defining {a, b)y = (l/k)Ty(ab) for a, b E Qy(f), we get a family of 
bilinear forms of the kind we desire. Since ( , ) is defined through the 
multiplication in Qy(f), the decomposition of Qy(f) for a regular value y 
given in formula (*) will be an orthogonal decomposition of <, } y . Thus we 
need only compute the signature of ( , ) restricted to each factor in (*). 

Let us deal first with the factor Qy(J). Since the residue class fields of this 
algebra arc all isomorphic to C, we may regard it as a C-algebra. Let <p': 
Qy(J) -» R be the functional obtained by restricting Tr For any real number 
0» ?i(fl) " <p'(ei€a) is a real linear functional, and since ( , ) , is nonsingular 
and e** is a unit in Qy(f), the functionals <, ) ^ will all be nonsingular and 
thus will all have the same signature. But < , ) ^ = - <, y ^ so sign < , ) ^ = 
s i8n < » > f c " - « g n < ' V Thus sign ^V^0' and thc factor Ö/CO 
contributes nothing to the signature of < , } . 

Finally, we compute the signature of <, ) restricted to the factor R 
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x • • • X R of Qy(f). Since ƒ is a regular value, the numbers £(*,) are 
nonzero, so the elements 

^ ( 0 , . . . , J W 0 ) 6 R X . . . XR 

form an orthogonal basis f or R X • • - x R with respect to the form <, ) . 
We need only compute (e(, et}y: 

<e„ *,>, = (l/*)r,((0,..., fa,),..., 0)2) 

= (i/*)r,((o,...,j(x,)2,...,o)) 

= (iA)Kx,)^((o,...,K^),...>o)). 
But §(x;) is the residue class in the ith factor of R X • • • X R of %> so the 
value of the last expression is the value of the function 

(iA)fw-m) 
at jcf.. 

However T($) = Tr(£/£) = k is the constant function with value fc, so we 
get <*„*,> «£(*,). 

Thus the signature of ( , ) , which is the sum of the signs of {ei9 *,.), is the 
sum of the signs of the Jacobian of ƒ at the preimages near 0 of a regular-
value of/, which was our definition of the degree of/. 

Some remaining questions. 
(1) One is: What about other relative dimensions? For example, if one 

considers a finite map germ ƒ: (R\ 0) -» (Rp, 0), with p > n9 then Q (ƒ) will 
no longer satisfy the Serre-Berger Proposition, but there will be a sort of 
family of bilinear forms on £?(ƒ), corresponding to the different minimal 
ideals. Is there topologically interesting information to be had from this 
family? What about the degrees of maps obtained from ƒ by projecting 
R* -» Rn in a generic way. (One gets in that way a different family of bilinear 
forms.) 

As for the case p < n, one obtains a ring which is the analogue of Q (ƒ), 
but has higher Krull dimension. Do the invariants of such rings (Hubert 
function . . . ) have any topological significance? One might also try to do 
something with the germs derived from ƒ by composing with generic 
inclusions R^-^R"; their local rings have properties closely related to the 
properties of this local ring of/. 

(2) A second question that fits naturally into the framework of this report is 
the one examined recently in [Damon-Galligo]: What is the significance for a 
map germ/: (Rn, 0) -* (R", 0), of the number dimR (?(ƒ)? Clearly dimR Q(f) 
bounds the number of points near 0 of ƒ ~ !(c), for e near 0. Are there perhaps 
arbitrarily small deformations/, of ƒ such that ƒ f l(e) has dimR Q(f) points 
near 0 for (some) small el Damon and Galligo show that the answer is "yes" 
for n =* 2, and in some other cases, and conjecture that it should always be 
"yes". 

(3) Another subject that invites future work is the case of groundfields 
other than R. I would propose that the degree at 0 of a finite polynomial map 
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ƒ: Kn -> Kn
9 where K is an arbitrary field of characteristic 0, be defined to be 

the equivalence class of the quadratic form <(, ) on the local ring of ƒ at 0 
which we will write QK(f). It can be shown [Eisenbud-Levine] that the 
equivalence class of this form is independent of <p. This definition is "right" in 
the case K = C, the complex numbers, since there the degree is equal to 
dimc 2c(/) ' which is the only invariant of { ) . If K = R, we have seen that 
the degree is the signature, the primary invariant of the form (the other 
invariant, the dimension of QR(f), gives the degree of the "complexification"; 
our notion of "degree ƒ ' will of course always include the degree of the 
extension of/to any bigger field). 

There is really no reason to stick to fields of characteristic 0 for all this, 
though naturally one should not use the Jacobian for / over a field of 
characteristic p\ If Xl9...,Xn are coordinates in the source Kn, and 
ƒ , , . . . , ƒ , are the components of ƒ (which all must vanish at 0) then in the 
power series ring A'flX,,.. . , Xn\] we may find elements au such that 

J 

It can be shown that if ƒ is finite at 0 then det a{J
 x D has a nonzero residue 

in Qx(f) = K[\X\> • • • > Xn\]/(f\> •••>ƒ„) generating the unique minimal 
ideal, and that over a field of characteristic 0, / = dim^ Q (f) • D in Q (ƒ), so 
that we may use D in place of / . Again, the class of ( , ) is uniquely 
determined by Q ( ƒ) and D, at least as long as char K^2. 

The question is, does this idea of degree have some other interpretation (or 
usefulness), for example in cohomology theory, as is the case over R or C. 
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