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Of course it isn't too important but I've always thought that Pitt is 
responsible for the result that any T: lp-*lq,p > q, is compact. The authors 
ascribe this to Paley (without reference). But, enough of this! 

The book is highly enjoyable reading for anyone and must reading for 
anyone interested in vector measures or the geometry of Banach spaces. 

The book, like most first editions, has misprints. No one will have difficulty 
with "language operators" (p. 148) or "lconverging" (p. 182) [when read in 
context] and serious readers will find the subscripts lost or interchanged in 
some of the displays. 

Thus the only serious mistake is the misspelling of the reviewer's name (p. 
253). 
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Jordan pairs, by Ottmar Loos, Lecture Notes in Math., vol. 460, Springer-
Verlag, Berlin and New York, 1975, xvi + 218 pp., $9.50. 
Jordan pairs are a generalization of Jordan algebras and Jordan triple 

systems.1 The archetypal example of a Jordan algebra is the hermitian n X n 
matrices x* » x (for x* =•* x ' the conjugate transpose) under the product 
U(x)y » xyx, while an example of a Jordan triple system is the rectangular 
n x m matrices under P(x)y » xy*x. Such Jordan systems have recently 
come to play important roles in algebra, geometry, and analysis. In particular, 
the exceptional Jordan algebra H3(K) of hermitian 3 x 3 matrices with 
entries from the Cayley numbers K has important connections with excep­
tional geometries, exceptional Lie groups, and exceptional Lie algebras. 

Although the structure of finite-dimensional Jordan algebras is well known, 
the structure of Jordan triple systems is generally known only over algebra­
ically closed fields. The main obstacle to attaining a complete theory for 
triple systems is the paucity of idempotents: most nonassociative structure 
theories lean heavily on Peirce decompositions relative to idempotents, and a 
general triple system may have few "idempotents" x with P{x)x * x. For 
example, the triple system obtained from the real numbers via P(x)y * 
-xyx has no nonzero idempotents at all. However, a well-behaved triple 
system does have many pairs of elements (x,y) such that P(x)y = x, 
P(y)x « y (in the above example, for any x =£ 0 we may take y » — x~l). 
Such a pair furnishes a pair of simultaneous Peirce-like decompositions of the 
space, which could provide useful structural information if the two didn't 
keep getting tangled up in each other. 

Even in Jordan algebras, many concepts involve a pair of elements (x,y). 
Frequently this takes the form of x having a certain property, such as 
idempotence (x2 * x) or quasi-invertibility (invertibility of 1 — x), in the 
>>-homotope; this roughly corresponds to the element xy having that particu­
lar property, and so serves as a substitute for the associative product xy which 
doesn't exist within the Jordan structure. (The y-homotope of an associative 

*For a quick background survey of these systems see the article, Jordan algebras and their 
applications in this issue. 
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algebra has twisted product x y z =•= xyz, the^-homotope of a Jordan algebra 
has product U{y\x)z * U(x)U(y)z s xyzyx * x y z y x). 

An isotope is a homotope by an invertible element >>; passing to an isotope 
roughly corresponds to changing the unit element from 1 to y ~l. It is often 
natural to treat a Jordan algebra together with all its isotopes as a single 
algebraic system: many properties are independent of isotopy, not dependent 
upon an artificial singling-out of a unit element. The structure group, consis­
ting of the autotopies (isomorphisms of isotopes), is an important algebraic 
group which appears more naturally than the automorphism group, consisting 
of those autotopies fixing the disinguished unit element. Similarly the Lie 
algebra of the structure group (the structure algebra, consisting of 
"diffeotopies") often arises more naturally than the Lie algebra of derivations 
(those diffeotopies killing the unit element). The structure group of the 
exceptional Jordan algebra H3(K) is a Lie group of type E6 while the 
automorphism group is of type F4; the structure and derivation algebras are 
Lie algebras of types E6 and F4. The structure group really consists of pairs 
(g> £ # ) of invertible linear transformations with g(U(x)y) * U(g(x))g*(y) 
(whereas automorphisms have g(U(x)y) =•= U(g(x))g(y))9 which suggests we 
think of the elements x and y in the product U(x)y as belonging to different 
spaces, with g acting on the JC'S and g # on the j>'s. 

Such paired systems first arose in M. Koecher's work on Lie algebras. In a 
well-behaved Lie algebra with graded decomposition L = LX(B LQ® L _ J 
(where the degree of the product is the sum of the degrees of the factors, 
[Li9Lj] c Lg+j), the pair of spaces (Ll9L_x) naturally carries Jordan-like 
products Q(xl9yx)u„x - [[xX9 u_x]9 yx] G Lx and fi(K-i, o_i)x, -
[[tt-i, xx]9 v_x] E L_„ where LQ acts as derivations of these induced 
products. (Note that there is no natural product on Lj or L_x themselves, 
since [L„ Lx] c l 2 * 0 an<* [L_tf L_X] c L„2 = 0.) This Jordan structure 
can be used to "coordinatize" the Lie algebra. Only when L carries an 
automorphism exchanging Lx and L_x can both be identified with a single 
Jordan triple system, and only when there is an inner automorphism ex­
changing Lx and L_ x is the coordinate system J a unital Jordan algebra. Thus 
it is the Jordan pair which appears in the general situation. This observation 
was implicit in the work of M. Koecher and explicit in the work of K. 
Meyberg, who coined the term "verbundene Paare" but concentrated his 
attention on the triple system case. O. Loos has also shown how Jordan pairs 
arise naturally as "coordinates" for algebraic groups with decomposition 
G « GXG0G_X into parabolic subgroups. 

1. Jordan pairs, triple systems, and algebras. The algebraic structure which 
emerges from these examples is a pair of spaces (K+ , V") which act on each 
other (but not on themselves) like Jordan triple systems: a Jordan pair has 
products Q(xB)y_e E Ve (e * ±1) and derived products D(xe9y„e)ze « 
Q(x*> ze)y~t £ V* which satisfy the usual 3 Jordan identities (1) 
QMD(y-„xe) « D(xe9y_e)Q(xe)9 (2) D ( 2 W ^ a j . e ) -
D(xt9Q(y^)xe)9 (3) Ö ( e W ; - 8 ) * Ö W 8 ( ^ e ) e ( 4 In case K+ is 
n X m matrices and V is m X n matrices with Q(xe)y^e » xyx9 these 
amount to x(yxz + zxy)x » xy(xzx) + (xzx)yx9 {xyx)yz + zy(xyx) « 
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x(yxy)z + z(yxy)x, (xyx)z(xyx) = x(y(xzx)y)x. 
We can build such a Jordan pair by "doubling" a unital Jordan algebra J: 

setK+ = F""=7 and Qfa)y~e = U(x)y. These pairs contain elements vt 

(such as the unit element 1) for which "multiplication by v" Q(ve) is a 
bijection K~e-»K'. Conversely, every Jordan pair with such invertible 
elements can be obtained in this manner, so Jordan pairs with invertible 
elements are equivalent to unital Jordan algebras up to isotopy. Under this 
equivalence the automorphism group and derivation algebra of the Jordan 
pair correspond to the structure group and structure algebra of the Jordan 
algebra. It is an open question whether one may always somehow "adjoin a 
unit" to a Jordan pair or triple system and thereby reduce it to a Jordan 
algebra. 

Similarly we may double a Jordan triple system T to obtain a Jordan pair 
(T, T) via Qfa)y„e * P(x)y. Such pairs have canonical exchange 
involution fay)-+(y, x), and the category of Jordan triple systems is 
equivalent to the category of Jordan pairs with involution. 

On the other hand, Jordan pairs may be thought of as special kinds of 
triple systems. A polarized Jordan triple system is a Jordan triple system 
together with a "symplectic" decomposition T » T+ © r~ such that 
P(Te)T~e c T', and P(Te)Te = P(T% T~e)r = 0. We have inverse 
functors T+ © T~ <r+(T+,T~) between the category of polarized Jordan 
triple systems and the category of Jordan pairs. 

2. Inner automorphisms and Peirce décompositions. The lack of a unit 
element in Jordan pairs causes a shift in emphasis towards concepts which 
provide an effective replacement. In Jordan theory an important role is 
played by the multiplication operator U(x) of the element JC (reducing to 
z -» xzx in associative algebras); in the theory of Jordan pairs a correspon­
ding role is played by the multiplication operator B(x,y) * I - D{x9 y) + 
ÔO0ÔO0 °f the Pa^ fay) (reducing to z -»( l — xy)z{\ - y x ) in the 
associative case). The quasi-inverse plays the role in Jordan pairs that the 
inverse does in Jordan algebras. O. Kühn has shown how the theory of 
Jordan pairs can be derived from quasi-inversion as the basic algebraic 
operation (just as T. A. Springer has derived Jordan algebras from inversion). 
The pair fay) is quasi-invertible iff the operator B(x, y) is invertible (just as 
x is invertible iff U{x) is invertible), in which case we obtain an inner 
automorphism ^{x9y) * (B(x9y), B(y,x)~l). Even in the case of Jordan 
algebras these B(x,y)9s seem more natural generators of the inner structure 
group than the U(x)9s. (Over an infinite base field both generate the same 
group of linear transformations, using U(x) « B(l — x, 1) and B(x,y) — 
U(x)U(x~l — y) and a Zariski density argument.) For example, the infini­
tesimal versions of the B(x,y)9s are the generators D(x,y) of the inner 
structure algebra. The B9s are called Bergman operators because the Bergman 
kernel function of a bounded symmetric domain is given by k{x, y) -
teiB{x,y)-\ 

In a Jordan triple system one can only define odd powers of an element. In 
a Jordan pair one can define arbitrary powers, but only for a pair of elements 
fay) (where x^ denotes the nth power of x in the^-homotope). These two 
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notions of power are related: when (x,y) is considered as an element of the 
polarized triple system corresponding to the pair V, the odd triple powers are 
(x,y)2n~l « (JC(#V),yin>x)). In this context, an idempotent is a pair (x9y) with 
(x,y)3 = (x,y), i.e. x (2^ - Q (x)y - x and ƒ ftx> = gOOx = ƒ. 

One of the key aspects of the theory of Jordan pairs is the broadness of this 
concept of idempotent. If e2 = e is idempotent in a Jordan algebra, or more 
generally e3 — e is tripotent in a Jordan triple system T, then (e, e) is 
idempotent in the Jordan pair (T9 T), but in a well-behaved Jordan pair every 
element x may be completed to an idempotent (x,y). (In an associative 
matrix algebra, for example, by von Neumann regularity we can always find 
y' with xyrx « x, and a slight modification y = y'xy' produces an element 
with yxy * y as well as xyx =» y.) By considering idempotents (x, >>) where 
x*£y the theory admits a rich supply without losing any of the usual 
properties of idempotents. 

As usual in nonassociative theories, Peirce decompositions V = V2 © Vx © 
VQ relative to idempotents are key ingredients in unlocking the structure 
theory, reducing the general product on V to more concrete products between 
Peirce spaces Vr (In the Peirce decomposition of the (n + m) X (n + m) 
hermitian matrices relative to the idempotent 

• -G :)• 
V2, Vl9 VQ consist respectively of all 

(A OW 0 B\ (0 0\ 

\o or\B* oMo c) 
for hermitian n X n matrices A, arbitrary n X m matrices B9 and hermitian 
m X m matrices C.) The basic facts about Peirce decompositions follow 
cleanly via the 1-parameter group of inner automorphisms 

the homomorphism condition <(>e(st) = </>cCs)<k(0 yields the decomposition 
into eigenspaces F2, V{, V& while the automorphism condition <t>e(t)(Q(x)y) 
** Q(<t>e(t)x)<t>-e(i~l)y yields the rules for multiplying these spaces. 

3. Alternative pairs. The basic difference between Peirce decompositions of 
Jordan pairs or triple systems and those of Jordan algebras is that a well-
behaved pair can have a "rectangular" Peirce decomposition V = V2 © Vx 

with V0 « 0 but Vx T* 0, whereas Peirce decompositions in an algebra are 
"square'Mn a semisimple Jordan algebra V0 = 0 forces Vx = 0. The 3 basic 
examples of rectangular decompositions result from Jordan triple systems 
T= 7*2© Tx of matrices under P(x)y *= x(j>*x) as follows: (1) the 
rectangular matrices T = Mnn+m(D) with entries in an associative algebra D 
have T2 » Mnn(D) and Tx s Mnm(D), (2) alternating matrices of odd order 
T x A2n+\(k) h a v e T2 ~ ^2«W a n d T\ - £2"> (3) the 1 X 2 matrices with 
entries in a Cayley algebra K have T2 ss MhX(K) and 7̂  a K. 

A Peirce space Fi carries a trilinear product (x^^^g) » 
Z)(Z)(xc,^_c)ec, ^_c)z£; in the above 3 examples this product <xyz> reduces 
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to (1) xy*z in Mnm(D), (2) xy*z + (Sy)x*(S~lz) in k2n (S the standard 
alternating matrix of degree 2ri), (3) (xy)z in K. In general, when V0 = 0 this 
induced structure on Vx may be axiomatically characterized as an alternative 
pair A = (A+,A~) with product ( x ^ - ^ ) G 4̂C obeying certain identities 
resembling those for alternative algebras; any such alternative pair has a 
"standard imbedding" as Vx in a Jordan pair V = F2 © Fj. We may refine 
the structure of Vx by considering further Peirce decompositions of it as 
alternative pair relative to orthogonal idempotents in Vx (which of course are 
no longer orthogonal when considered in V). The numerous Peirce relations 
for alternative pairs suffice to show that a suitable simple alternative pair is 
one of the 3 basic types listed above. (This reviewer feels that it may be 
possible to avoid the complicated and asymmetric identities of alternative 
pairs by analyzing the Jordan pair directly using "collinear" rather than 
merely "orthogonal" families of idempotents.) 

4. Structure theory. One of the triumphs of the theory of Jordan pairs is the 
complete structure theory for pairs with dx.c. on inner ideals. Outside the 
case of finite-dimensional systems over algebraically closed fields there are 
too few idempotents to carry through a structure theory for Jordan triple 
systems. By passing from Jordan triple systems to Jordan pairs one is able to 
bypass these difficulties and push through the theory over an arbitrary ring of 
scalars. (To complete the classification of Jordan triples one needs to classify 
involutions in Jordan pairs, and this is still an open problem.) 

The proper notion of "one-sided ideal" for a Jordan system is that of an 
inner ideal, a subspace Be c Ve closed under "inner multiplication" by V, 
Q(Be)V~e c Be. An important example is the principal inner ideal Be = 
Q(xe)V~e determined by an element x. (In an associative matrix algebra A 
each left ideal has the form Af, each right ideal the form eA9 and each inner 
ideal the form eAf for idempotents e, ƒ; a principal inner ideal has the form 
xAx.) As in Jordan algebras, the natural finiteness restrictions are descending 
chain conditions on inner ideals. 

Putting together the analysis of Vx as alternative pair and the known 
structure theory of V2 as unital Jordan algebra, the following basic structure 
theory is obtained: a "semisimple" Jordan pair with d.c.c. on inner ideals is a 
direct sum of simple pairs which are either (0) Jordan division pairs, (I) 
rectangular matrices (Mwm(Z>), Mnm(D)) for an associative division algebra 
D, (II) alternating matrices (An(k), An(k)) for an extension field k, (III) 
hermitian matrices (Hn(D, D0), Hn(D, D0)), (IV) "ample outer ideals" in the 
Jordan algebra J(Q, c) of a nondegenerate quadratic formg, (V) 1 X 2 
Cayley matrices (MX2(k), Ml2(K)), (VI) hermitian 3 x 3 Cayley matrices 
(H3(K), H3(K)). The latter two pairs, of dimension 16 and 27 over their 
centers, are the only pairs which are exceptional in the sense that they cannot 
be imbedded in associative systems. A slightly more general description is 
obtained for pairs with dx.c. only on principal inner ideals, under the 
additional assumption of the existence of a maximal idempotent (equiva-
lently, a.c.c. on principal inner ideals). 

Here Types (0), (III), (IV), (VI) always contain invertible elements and 
come from Jordan algebras, as does (I) when m = n and (II) when n is even, 
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but (V) never does; it may be realized as a Peirce 1-space in (VI). Notice that 
all 6 Types of simple Jordan pairs with dx.c. come from Jordan triple 
systems, and all can be imbedded in pairs with invertible elements: (I) has 
Mn„{D) C Mn+m,n+m(D), (II) has A2m^(k) c A2m{k\ and (V) has MXJJC) 
C H3(K). 

Summary. This book is a good place to find the most elegant modern 
methods in quadratic Jordan algebras and triple systems, though as it as­
sumes basic results on the structure of alternative and Jordan algebras it is 
not completely self-contained. 

The concepts of Jordan and alternative pairs introduced here for the first 
time generalize the previously developed theories of Jordan and alternative 
triple systems, and complete theories are obtained. Pairing sufficiently broad­
ens the concept of idempotent to yield a structure theory for pairs with d.c.c. 
analogous to that obtained for Jordan and alternative algebras, but unat-
tained for triple systems. 

The theory of Jordan pairs not only recasts and completes the theory of 
Jordan triple systems, but provides a single algebraic system describing a 
Jordan algebra together with all its isotopes. The structure group receives its 
natural interpretation as the automorphism group of the associated Jordan 
pair. Jordan pairs arise naturally and spontaneously in Lie theory and in 
algebraic groups. 

The theory of alternative pairs and triple systems is really an abstract 
treatment of certain Peirce 1-spaces in Jordan pairs and triple systems, and is 
not so intrinsically important. 

Just as the passage from linear to quadratic Jordan algebras (or algebraic 
systems whose basic operation is inversion) requires a readjustment of habits 
of thinking, so the passage from Jordan triple systems to Jordan pairs requires 
new perspectives. Those who prefer to view a Z2-graded algebra as a sum 
A = Ae © A0 of even and odd pieces rather than a union A — (Ae, A0)> may 
use the equivalent concept of polarized Jordan triple system. Nevertheless 
there are real advantages to be gained from clearly separating a pair into 
distinct pieces. Those interested in nonassociative algebras and their appli­
cations would do well to gain facility in the language of pairs, and the present 
book is an excellent place to learn. 

KEVIN MCCRIMMON 


