ON THE THEORY OF Π_{1}^{1} SETS OF REALS

BY A. S. KECHRIS¹ AND D. A. MARTIN

Communicated by Solomon Feferman, June 2, 1977

1. An ordinal basis theorem. Assuming that $\forall x \in \omega^{\omega} (x^{\#} \text{ exists})$, let u_{α} be the α th uniform indiscernible (see [3] or [2]). A canonical coding system for ordinals $\langle u_{\omega} \rangle$ can be defined by letting $W_{0} = \{w \in \omega^{\omega} : w = \langle n, x^{\#} \rangle$, for some $n \in \omega, x \in \omega^{\omega}\}$ and for $w = \langle n, x^{\#} \rangle \in W_{0}$, $|w| = \tau_n^{L[x]}(u_1, \ldots, u_{k_n})$, where τ_n is the *n*th term in a recursive enumeration of all terms in the language of $ZF + V = L[\dot{x}], \dot{x}$ a constant, taking always ordinal values. Call a relation $P(\xi, x)$, where ξ varies over u_{ω} and x over ω^{ω} , Π_k^1 if $P^*(w, x) \Leftrightarrow w \in W_{0} \land P(|w|, x)$ is Π_k^1 . An ordinal $\xi < u_{\omega}$ is called Δ_k^1 if it has a Δ_k^1 notation i.e. $\exists w \in W_{0} (w \in \Delta_k^1 \land |w| = \xi)$.

THEOREM 1($ZF + DC + DETERMINACY(\Delta_2^1)$). Every nonempty Π_3^1 subset of $u_{i,j}$ contains a Δ_3^1 ordinal.

COROLLARY 2 (ZF + DC + DETERMINACY (Δ_2^1)). Π_3^1 is closed under quantification over ordinals $\langle u_{i,j}$ i.e. if $P(\xi, x)$ is Π_3^1 so are $\exists \xi P(\xi, x), \forall \xi P(\xi, x)$.

COROLLARY 3 (ZF + DC + AD). The class of Π_3^1 sets of reals is closed under $< \delta_3^1$ intersections and unions.

Martin [3] has proved the corresponding result for Δ_3^1 .

2. A Kleene theory for Π_3^1 . Kleene has characterized the Π_1^1 relations as those which are inductive (see [7]) on the structure $\langle \omega, \langle \rangle = Q_1$. Let $j_m : u_{\omega} \rightarrow u_{\omega}, m \ge 1$, be defined by letting

$$j_m(u_i) = \begin{cases} u_i, & \text{if } i < m, \\ u_{i+1}, & \text{if } i \ge m, \end{cases}$$

and then

$$j_m(\tau_n^{L[x]}(u_1, \cdots , u_{k_n})) = \tau_n^{L[x]}(j_m(u_1) \cdots j_m(u_{k_n})).$$

Let R be the relation on u_{i} , coding these embeddings, i.e.

$$R = \{ (m, \alpha, \beta) \colon m \in \omega \land \alpha, \beta < u_{\omega} \land j_{m}(\alpha) = \beta \}.$$

Put $Q_3 = \langle u_{\omega}, \langle, R \rangle$.

Copyright © 1978, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 04A15, 02K30, 28A05, 54H05; Secondary 02F35, 02K25, 02K35, 04A30.

¹Research partially supported by NSF Grant MCS 76-17254.

THEOREM 4.(ZF + DC + DETERMINACY (Δ_2^1)). A set of reals is Π_3^1 iff it is absolutely inductive on the structure Q_3 .

In the second part of the above characterization a relation on reals is viewed as a second order relation on u_{ω} and absolutely inductive means that only parameters from ω are allowed in the definitions (see [7]).

It should be mentioned here that Q_3 is up to absolute hyperelementary equivalence the same as $\langle u_{\omega}, \langle, T^2 \rangle$, where T^2 is the tree (on $\omega \times u_{\omega}$) coming from the Martin and Solovay [4] analysis of Π_2^1 sets (see [3] for the definition of T^2).

One also obtains the analog for Π_3^1 of the Souslin-Kleene representation of Π_1^1 sets in terms of well-founded trees.

THEOREM 5 ($ZF + DC + DETERMINACY(\Delta_2^1)$). A set of reals P is Π_3^1 iff there is a tree T on $\omega \times u_{\omega}$ which is recursive in the structure Q_3 and $P(x) \Leftrightarrow$ T(x) is well founded.

For the notation see [2]. The fact that every Π_3^1 set can be so represented is a well-known result of Martin and Solovay [4], the converse being new here.

Let $Q_3 = \langle u_{\omega}, \langle, \{u_n\}_{n < \omega} \rangle$. Then we also have the context of full *AD*, in which case $u_n = \aleph_n, \forall n \leq \omega$.

THEOREM 6 (ZF + DC + AD). A set of reals is Π_3^1 iff it is Π_1^1 on the structure Q_3^- .

3. Explaining the Q-theory. The results in §2 provide a nice explanation for the Q-theory (see [5], [1]) at level 3, which accounts for the structural differences between Π_3^1 and Π_1^1 sets. For example, a real is Δ_3^1 iff it is absolutely hyperelementary on Q_3 while it is in Q_3 iff it is hyperelementary (i.e. parameters $< u_{\omega}$ are allowed) on Q_3 . Also if y_0 is the first nontrivial Π_3^1 singleton then y_0 is hyperelementary-in- Q_3 equivalent to the complete inductive-in- Q_3 subset of u_{ω} .

4. Higher level analogs of L. Assuming Projective Determinacy (PD), let T^3 be the tree (on $\omega \times \delta_3^1$) associated with an arbitrary Π_3^1 -scale on a complete Π_3^1 set (see [6] and [2]). Let also C_4 be the largest countable Σ_4^1 set. The next result proves a conjecture of Moschovakis and shows that $L[T^3]$ is a correct higher level analog of L for level 4.

THEOREM 7 $(ZF + DC + DETERMINACY (L[\omega^{\omega}] \cap power (\omega^{\omega})))$. For any T^3 as above, $L[T^3] \cap \omega^{\omega} = C_4$. In particular $L[T^3] \cap \omega^{\omega}$ is independent of the tree T^3 .

Open problem. Is $L[T^3]$ independent of T^3 ?

Further applications of the methods developed here to the theory of Π_3^1 sets as well as details and proofs of the results announced here will appear elsewhere.

REFERENCES

1. A. S. Kechris, The theory of countable analytical sets, Trans. Amer. Math. Soc. 202 (1975), 259-297.

2. ——, On projective ordinals, J. Symbolic Logic 39 (1974), 269-282.

3. D. A. Martin, Projective sets and cardinal numbers; some questions related to the continuum problem, J. Symbolic Logic (to appear).

4. D. A. Martin and R. M. Solovay, A basis theorem for Σ_3^1 sets of reals, Ann. of Math. 89 (1969), 138-160.

5. _____, Basis theorems for Π_{2k}^1 sets of reals (to appear).

6. Y. N. Moschovakis, Uniformization in a playful universe, Bull. Amer. Math. Soc. 77 (1970), 731-736.

7. ———, Elementary induction on abstract structures, North-Holland, Amsterdam, 1974.

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA 91125

DEPARTMENT OF MATHEMATICS, ROCKEFELLER UNIVERSITY, NEW YORK, NEW YORK 10021

Current address (D. A. Martin): Department of Mathematics, University of California, Los Angeles, California 90024