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1. An ordinal basis theorem. Assuming that V* £ <J° ( x # exists), let 
ua be the ath uniform indiscernible (see [3] or [2]). A canonical coding system 
for ordinals < ww can be defined by letting M)w = { w E c o w : w = (n, x#>, for 
some n G co, x E co"} and for w = (n, x#) e WO ,̂ |w| = Tn'lx](u1, . . . , uk ), 

where r„ is the «th term in a recursive enumeration of all terms in the language 
of ZF + V = L [x], je a constant, taking always ordinal values. Call a relation 
P(£, x), where £ varies over « w and x over co^, Il£ if P*(w, x) o w G M)^ A 
P(M, x) is n£. An ordinal £ < w^ is called A£ if it has a A£ notation i.e. 3 w 
G M ) w ( w E A i A |w | = £). 

THEOREM 1(ZF + DC + DETERMINACY (A2)). .Cverv nonempty Yl\ sub
set ofuu contains a A\ ordinal. 

COROLLARY 2 (ZF+ZX7+ DETERMINACY (A2)). IT3 is closed under quanti

fication over ordinals < uu i.e. ifP(£, x) is II3 so are 3|JP(£, x\ \/%P(£, x). 

COROLLARY 3 (ZF + DC + AD). The class of IT̂  sets of reals is closed 

under <ô\ intersections and unions. 

Martin [3] has proved the corresponding result for A3. 

2. A Kleene theory for II3. Kleene has characterized the II} relations as 
those which are inductive (see [7]) on the structure <co, <> = Qt. Let j m : ww 

—» « w , m > 1, be defined by letting 

\ui9 i f / < m , 

/ w/+i> tf»>w, 

and then 

/«Crfk»!. • • • %,)) - tf Ix,(/m(«i) • • • />*„))• 
Let /? be the relation on i/w coding these embeddings, i.e. 

R = {(m, a, j5): m G co A a, 0 < ww A /m(a) = 0}. 

P"t Q3= <llw, <,ƒ?>. 

^AfS (MOS) jufr/ecr classifications (1970). Primary 04A15, 02K30, 28A05, 54H05; 
Secondary 02F35, 02K25, 02K35, 04A30. 
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THEOREM 4.(ZF + DC + DETERMINACY (A\)). A set of reals is H\ iff it is 
absolutely inductive on the structure Q.3. 

In the second part of the above characterization a relation on reals is viewed 
as a second order relation on uœ and absolutely inductive means that only para
meters from co are allowed in the definitions (see [7] ). 

It should be mentioned here that £ 3 is up to absolute hyperelementary 
equivalence the same as <ww, <, T2 >, where T2 is the tree (on w x « J coming 
from the Martin and Solovay [4] analysis of 11̂  sets (see [3] for the definition of 

r2). 
One also obtains the analog for II3 of the Souslin-Kleene representation of 

IlJ sets in terms of well-founded trees. 

THEOREM 5 (ZF + DC + DETERMINACY (A*)). A set of reals P is U\ iff 
there is a tree T on co x ww which is recursive in the structure Q 3 and P(x) o 
T(x) is well founded. 

For the notation see [2]. The fact that every II3 set can be so represented 
is a well-known result of Martin and Solovay [4], the converse being new here. 

I^t Q3 = <ww,<, {un}n<0}\ Then we also have the context of full AD, 
in which case un = Nw, Vw < co. 

THEOREM 6 (ZF + DC + AD). A set of reals is n£ iff it is Tl\ on the 
structure £ ^. 

3. Explaining the (?-tfieory. The results in §2 provide a nice explanation 
for the ö-theory (see [5], [1]) at level 3, which accounts for the structural dif
ferences between II3 and n} sets. For example, a real isA3 iff it is absolutely 
hyperelementary on £ 3 while it is in Q3 iff it is hyperelementary (i.e. parameters 
< MW are allowed) on £ 3 . Also if y0 is the first nontrivial II3 singleton then y0 

is hyperelementary-in-()3 equivalent to the complete inductive-in-£3 subset of ww. 

4. Higher level analogs of L. Assuming Projective Determinacy (PD), let 
T3 be the tree (on co x 83) associated with an arbitrary II3-scale on a complete 
II3 set (see [6] and [2]). Let also C4 be the largest countable S£ set. The next 
result proves a conjecture of Moschovakis and shows that L [T3] is a correct 
higher level analog of L for level 4. 

THEOREM 7 (ZF + DC + DETERMINACY (L [COW ] n power (cow))). For any 
T3 as above, L[T3] n cow = C4. In particular L[T3] n cow is independent of 
the tree T3. 

Open problem. Is L [T3] independent of T3t> 
Further applications of the methods developed here to the theory of n 3 sets 

as well as details and proofs of the results announced here will appear elsewhere. 
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