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Differential equations and their applications, by M. Braun, Applied Mathe­
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Applied mathematics cannot reasonably be described as a single field. 
Unlike pure mathematics, which does possess a unity and a definite historical 
tradition, applied mathematics today is a collection of subjects bound loosely 
together by their common reliance on mathematical notation, ideas and 
methods. Because of this, a project of writing an introduction to applied 
mathematics for undergraduates may seem to be a hopeless task. 

Martin Braun has shown that one should not give up so easily. Certainly 
many people who think of themselves as applied mathematicians will not find 
their favorite circle of ideas in an elementary text on differential equations. 
What is to be found, besides an excellent leisurely development of differential 
equations, is an introduction to the interaction between mathematics and its 
applications. 

Mathematics can play an important, sometimes crucial, role in the struc­
ture of other disciplines. The fundamental ideas and relations of a subject can 
sometimes be expressed quantitatively and unambiguously using mathemati­
cal notation. When this is done, a mathematical model of some aspect of the 
subject in question results. Mathematics then provides frameworks in which 
the relations in the model may be analysed and manipulated to yield 
predictions. These predictions may be compared with data gathered in the 
field to foster confidence in certain aspects of the model and to discover 
shortcomings of the model. This process can, and often does, lead to an 
interaction between mathematics and the discipline under study whereby the 
model is successively improved. Perhaps the most exciting aspect of the 
modeling process is when new phenomena come to light whose existence was 
not previously recognized. Of course mathematics as a pure subject can 
benefit from this interaction as well. 

These aspects of the modeling process find expression in Braun's book by 
way of a sequence of case studies of various applications. This is certainly not 
a new idea, even in the context of elementary differential equations. 
Engineering students have been subjected to 'problems analysis' courses for 
many years. Such courses typically exploit the case method to teach model 
building, and, on the side, offer a swashbuckling approach to the elements of 
differential equations. As we shall see, the present text offers more than just 
an up-to-date version of such courses. 



42 BOOK REVIEWS 

The text is aimed at students with a good first-year calculus sequence in 
hand. The pace is not intensive, with plenty of chat, in the best sense of the 
word. The extended examples are nicely woven into the fabric of a first 
course in the mathematical theory of differential equations. 

The theory is developed carefully, with attention to detail and rigor, and is 
standard fare mathematically except that parts of Chapter four (stability 
theory carried as far as the Poincaré-Bendixson theorem) would not usually 
appear in a text at this level. Such systematic development of the purely 
mathematical ideas and the depth to which the mathematics is carried is not 
at all common in courses aimed at engineering and science majors. On the 
other hand, what sets Braun's book apart from most second and third year 
mathematics texts on differential equations is the large collection of 
marvelous applications of the theory, many taken directly from original 
research papers in other areas. These applications are developed at length. 
The student is exposed to the modeling process in its full range-first tentative 
try, analysis of the result and comparison with the underlying situation being 
modeled, and consequent refinements of the model. He sees clearly the power 
of some of the deeper mathematical ideas and he sees interesting mathemati­
cal results suggested by the application in question. This is a composite view 
that is too seldom encountered by both mathematics majors and majors in the 
other sciences and in engineering. 

The applications in Chapters 1-3 include typical topics from mechanics, 
circuit theory, radiative decay and population growth. Even these fairly 
standard applications are given interesting settings. Here is one which uses 
only the very elementary theory. It is a nice recent addition to the arsenal of 
radiative dating techniques. 

The usual law for natural radiative decay is 

where N(t) denotes the number of atoms of a decaying substance present at 
time / and À is the decay constant for the substance in question. Note that À 
has the units of inverse time and that log 2/X is the half-life of the substance. 
The method to be explained presently was used to settle the authenticity of a 
painting attributed to Vermeer. (The story of the furor over this painting is 
quite interesting in its own right!) 

White lead (half-life 22 years) is an important pigment which has been used 
by painters for centuries. It is typically mixed with uranium and a radium 
descendent (half-life 1600 years). In its natural state, the amount of white lead 
decaying to lead is replaced more or less exactly by the radium decaying to 
white lead. This steady state is interrupted by the chemical process that 
extracts the white lead. Following extraction, the amount of white lead is 
reduced by its more rapid decay rate until it comes into equilibrium with the 
much smaller amount of radium remaining. 

Let>>(/) be the number of grams of white lead per gram of ordinary lead at 
time /, y0 the amount of white lead per gram of ordinary lead at time t0 when 
the white lead was extracted from the natural ore. Further, let r(t) be the 
number of disintegrations of radium per minute per gram of ordinary lead at 



BOOK REVIEWS 43 

time t. If X denotes the decay constant for white lead, then y is governed by 
the simple balance 

dy 
_ = _Xj,+ r(/), y(t0)=y0. 

As interest is focused only on a span of about three centuries, it's a fair 
assumption that the amount of radium remains constant, and hence that 
r(t) = r is a constant. Then it follows easily that 

y(t)=ytf-*'-ti + ^ (1 - e-^'-'o)). 

Nowj>(/) and r are easily measured quantities associated to the white lead of 
a particular painting. So if y0 were known, then t0 could be computed. Of 
course, y0 is not known, and moreover the number Xy0 (the number of 
disintegrations of white lead per minute per gram of ordinary lead) is seen to 
vary over a wide range (roughly 10"l to 102) in nature. 

An exact dating of a painting, or at least of the manufacture of the 
pigment, is therefore out of the question. However, it is possible to distinguish 
a twentieth century forgery and a painting executed three centuries ago. For 
supposing that the painting is genuine, then t — t0 is 300 years. Hence, upon 
measuring y{i) and r, the number Xy0 may be determined. For the painting 
entitled "Disciples at Emmaus", which was authenticated by a leading art 
historian and purchased by the Rembrandt society for $170,000, the value of 
Xy0 turns out to be about 105. This is unacceptably large and shows that the 
hypothesis that the painting is three hundred years old must be false. 

This sample is not unique in its interest and originality. The problem of 
determining the velocity of an object dropping under gravity through water is 
solved and used to examine a disposal method for radioactive waste. The 
resonance experienced by a mechanical system forced at its natural frequency 
is used to give a qualitative explanation of the famous Tacoma Narrows 
bridge disaster. A more unusual application of the very elementary theory is 
the analysis of a model used in the detection of diabetes. 

The examples from Chapter four are even more impressive. A model for 
predicting arms production by nations is developed and analyzed using linear 
stability theory. This yields criteria for predicting when an international 
political situation is likely to lead to war. Some of the deeper applications, 
using the nonlinear stability theory, are to prove the competitive exclusion 
principle in biology (two different species cannot earn their Uving in exactly 
the same way) and discover the asymptotic states of epidemics. In these latter 
applications, the going is decidedly nontrivial and the reader gains some 
appreciation of how insights and requirements developed from the underlying 
phenomena being modeled can be very useful in more challenging mathe­
matical situations. 

An instance, worth relating here, is based on the elegant analysis, given by 
Volterra, of a problem posed by the Italian biologist D'Ancona. In the mid 
1920's, D'Ancona came across an interesting fact in the course of his 
research. It seemed that of the various types of fish caught in the Mediter­
ranean and brought into various Italian ports, the percentage of selachins 
(sharks, skates, rays, etc.) rose dramatically during World War I. He reasoned 
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that this was due to the decreased intensity of fishing during the period of the 
war. He could not account for this phenomenon biologically, and so he posed 
the problem to Volterra. 

Volterra commenced by separating fish into the prey population x(t) and 
the predator population ̂ (0- He continued by postulating that the food fish 
(the prey) don't compete very intensively among themselves for food since 
their food supply is very abundant and the fish population is not very dense. 
With no predators around, the prey population would therefore grow ac­
cording to the simple Malthusian law, namely 

dx /iA 

where a is a positive constant. 
This rule plainly needs modification in the presence of the predators, and 

Volterra presumed the number of contacts of predators and prey per unit 
time to be proportional to the product x(t)y(t). Hence he arrived at the 
modified equation, 

% = ax(t) - bx(t)y(t), 

governing the growth of the prey population. Here both a and b are positive 
constants at this level of approximation. 

For the predators, however, there is a natural rate of decrease, proportional 
to their present numbers, which is offset by the availability of food. Thus 
Volterra arrived at the equation, 

^ - - cy{t) + dx{t)y(t), 

where c and d are positive constants. 
This system of equations may be analyzed and the following conclusions 

derived. First, any solution that begins in the positive quadrant of the x, y 
plane remains there subsequently. (Hence we don't have to worry about 
negative numbers of fish!) Secondly, all solutions x(t\ y(i) that have their 
initial value, JC(0), y(0) say, both positive are necessarily periodic functions. 

Now the data of D'Ancona was based on average catches over a period of 
one year. Hence in order to compare the solutions of Volterra's system with 
the data, temporal averages of the solutions of Volterra's system need to be 
computed. It is a nice example where the requirements of the modeling 
situation can lead to an interesting mathematical result. For if x(t)>y(t) is a 
positive quadrant solution of period T, then the average values, 

x = - ƒ x(i)dt and y = j ƒ y(t)dt9 

can be computed exactly. For note that x/x = a — by, so by periodicity, 

0 = ± [log x(T) - log *(0)] = 1 j T ^ ! dt 

= j fQ
T[a - by{t)]dt= a-by. 
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Solving, there appears ƒ = a/b* Similarly, x = c/d. 
So far the effects of fishing have been neglected. Suppose that fishing 

decreases the population of fish (all kinds) at a rate e > 0 proportional to the 
population. The constant e reflects how intensely the waters are being fished. 
With fishing included, the governing model becomes, 

§ = (a - e)x(t) - bx(t)y(t), ^ = -(c + e)y(t) + dx{t)y{t). 

Provided a — e > 0, this system is qualitatively the same as the original 
system that ignored fishing. Hence the average values for the system, 
modified to include fishing, are 

c + e , - a — e 
x = —j— and v = —:— . 

d b 
Plainly if e is decreased from a given level e0 < a, the average population of 
food fish decreases and the average population of predators increases and 
thus we have a qualitative explanation of D'Ancona's data. 

This result, known as Volterra's principle, has other applications. An 
important one is the prediction that, under certain conditions, insecticide 
treatments that kill both the pest and its enemies will actually increase the 
population of pests! 

Braun goes on to raise criticisms of this basic two species model and to 
suggest and analyze modifications of the model to deal with, for example, 
more intensive competition within each species. 

In addition to the lucid treatment of the theory, and the marvellous 
examples, there are a few other aspects of the book worth particular note. 
One is the collection of problem sets which are as rich and varied as the text 
itself. Others include a decent introduction to linear algebra and to numerical 
approximation of solutions of differential equations, including some rigorous 
error estimates. 

The length of the book (more than 700 pages, though admittedly these are 
reproduced from typescript) could be a drawback. Students will probably find 
the book attractive enough to offset any negative reactions generated by its 
considerable bulk. But in a one quarter, or one semester length course, the 
instructor would certainly have to skip around in the text, and some of the 
continuity would thereby be lost unless the students could be persuaded to do 
a lot of independent reading. 

Chapter 5 seems significantly weaker than the other four chapters. Students 
who have survived Chapter four can certainly be expected to handle a more 
substantial introduction to partial differential equations than just separation 
of variables combined with some simple applications of Fourier series. 
Moreover the chapter is bereft of exciting examples, and only the author's 
nice informal style can set it apart from any number of pedestrian intro­
ductions to the theory of partial differential equations. Considering the other 
accomplishments in the book, it is hard to be too damning on the points 
raised in the last two paragraphs. 

In sum, it appears that Braun has successfully crossed two very different 
approaches to introductory differential equations and has thereby made a 
significant contribution to the teaching materials available at this level. 
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There is a more subtle way in which the book under discussion may play a 
useful role. To elucidate this aspect requires a few remarks that may at first 
seem to have little relevance to Braun's book on differential equations. 

It is probably fair to say that in the nineteenth century no significant 
distinction was drawn between pure and applied mathematics. This was to 
change in the twentieth century, perhaps due in part to the higher standards 
of rigor and the increasing abstraction of pure mathematics. In response to 
the opening sentence in this review, one might reply that there was a time, not 
so long ago, when applied mathematics had a definite subject matter and a 
tradition to go along with it. This was exemplified clearly in Great Britain 
under the leadership of Jeffreys and G. I. Taylor for example. The subject 
matter of applied mathematics during this era might loosely be characterized 
as theoretical physics and mechanics. The tradition in mechanics was surely 
influenced strongly by Taylor, whose abilities at discovering phenomena and 
understanding their essential causes, building simple mathematical models 
and doing some elementary analysis to yield predictions which he then tested 
in the laboratory, were probably unparalleled in the history of science. 

Applied mathematics saw an enormous growth during and after World 
War II and a number of centers sprang up, in government laboratories and in 
various universities, both in Britain and in the U. S. A. By now many of the 
universities around Britain have groups firmly established in this tradition 
and there are a number of strong and active enclaves in North America and 
elsewhere around the world. This 'classical' style of applied mathematics 
emphasized using a strong physical intuition in conjunction with mathemati­
cal formalism. In the hands of its able practitioners, this mix of tools has had 
some striking successes and will continue to do so as long as the research 
stays firmly tied to particular situations. 

In the meantime, pure mathematics was not standing still. Very powerful 
new tools in, for example, the areas of functional analysis, probability theory, 
asymptotic analysis, numerical analysis and the general theory of differential 
equations, were being developed, and attempts were begun to apply these 
ideas to problems of interest to scientists outside of mathematics. There have 
been some striking successes of this 'modern' style of applied mathematics as 
well. Unfortunately these two schools of applied mathematics have tended to 
keep to themselves. Moreover in recent years there has developed a discern­
ible third brand of applied mathematics which seems to incorporate the weak 
features of both the classical and modern traditions in applied mathematics. 
It tends to be couched in a lot of generality, but there are no theorems of any 
mathematical interest, and there are no applications in sight, no particular 
problem to guide the line of development. Possibly this third style of applied 
mathematics has developed partly because the classical and modern styles 
have failed to reach an accord. 

In any case, the range of applications has grown enormously, and the 
growth in methodology, both classical and modern, has not been much 
slower, thus prompting my initial remark. It seems to me that no good 
purpose is served by the classical and modern styles of applied mathematics 
looking down their respective noses at each other. Rather they should join 
forces, or if that seems too difficult, then at least they shouldn't, by their 
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educational policies, insist that the next generation has to operate with the 
same prejudices. 

Braun's book has aspects that can please both styles of applied mathema­
ticians. The book could perhaps play a role in giving both pure and applied 
mathematics students and other science students an appreciation of both the 
classical and the modern styles of applied mathematics, and so far as this is 
so, the book may make a healthy contribution to the future direction of 
applied mathematic education. 
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Optimization, a theory of necessary conditions, by Lucien W. Neustadt, 
Princeton Univ. Press, Princeton, New Jersey, 1977, xii + 424 pp., $22.50. 

Optimale Steuerung diskreter Système, by W. G. Boltjanski, Akademische 
Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1976, 326 pp. 

The qualitative theory of optimal processes, by R. Gabasov and F. Kirillova, 
Marcel Dekker, Inc., New York, New York, 1976, xlvi + 640 pp., $55.00. 

1. Horreur. "Je me détourne avec effroi et horreur de cette plaie lamentable 
des fonctions qui n'ont pas de dérivée"; so said Hermite in a letter to Stieltjes. 
The reader who shares this aversion to nondifferentiable functions will 
undoubtedly be affronted by the three books in question. But mathematicians 
have become much more tolerant about the functions they will talk to. This 
has been most evident in optimization, where the need to consider differential 
properties of other than smooth functions arises frequently and funda­
mentally. In fact, these ill-bred functions are now often brought into the 
discussion from the start and used systematically, rather than being shunned 
whenever possible. The extent to which this is true is a striking feature of 
these three books, all of which were written by well-known researchers in the 
field of optimal control. 

The wedge in this breakthrough was the gradual recognition of the central 
role in optimization of convexity. This first took place in mathematical 
programming, and now the methods of convex analysis are being systemati­
cally applied in other areas as well; their use in optimal control is currently 
an active subject for research (see [4]). And convexity implies nondifferentia-
bility-not just because differentiability is unnecessary, but because clinging to 
it is simply not feasible. For example, one of the great successes of convex 
analysis is duality (see [9]) the pairing with an original minimization problem 
of a certain closely related maximization problem. Besides being rich in 
interpretation (e.g. stress vs. reaction, utility vs. price) this concept is at the 
heart of the most successful computational algorithms in mathematical 
programming. Yet even if the original problem of interest is smooth, its dual 
may very well fail to be. 

We shall encounter presently some further examples of fundamental 
nondifferentiability. But before we arrive at what Hermite would think of as 
this sorry pass, let us look back. 


