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EQUIVARIANT SMOOTHING THEORY

BY R. LASHOF

Given a finite group G acting on a topological manifold M, when can we
put a smooth structure on M such that G acts smoothly? Our approach to this
problem is via equivariant immersion theory. This generalizes the immersion
theory approach of [12], and we begin by reviewing these ideas. Details will
appear in [13].

1. The immersion approach to smoothing theory. A map a: M7 - M7}
between n-dimensional topological manifolds is called a (topological)
immersion if a is a local homeomorphism. Of course, a smooth immersion is a
topological immersion of the underlying topological manifolds. The basis of
the immersion approach to smoothing is the following trivial lemma:

LEMMA 1. A topological immersion a of a topological manifold M" into a
smooth manifold V" defines a unique smooth structure on M such that a
becomes a smooth immersion.

In fact, define smooth local coordinates on M by pulling back the local
coordinates on ¥ via the local homeomorphisms. We will denote this smooth
structure by M,.

Recall that the differential of a smooth immersion f: V7 — V7 induces a
bundle homomorphism df: TV, — TV, of the tangent vector bundles which is
an isomorphism on fibres. Call such a bundle homomorphism a repre-
sentation and let R(TV,, TV,) be the space of representations with the
C°topology and 1°(V,, V) the space of smooth immersions with the C*-
topology. The Smale-Hirsch theorem for manifolds of the same dimension
states:

THEOREM A (HIrscH). If no component of V, is closed, d: I*(V,, V) —>
R(TV,,TV,) is a weak homotopy equivalence. The relative version for
immersions modulo a given immersion on a neighborhood of a closed subset A
holds, provided M — A has no compact components.

For a topological manifold M we have Milnor’s tangent microbundle [15],
[12]. Since the fibre of M over p € M is essentially a neighborhood germ, a
local homeomorphism f: M, - M, defines a microbundle representation
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df: TM, — 7M,. (Explicitly, the total space of 7M is any neighborhood U of
the dlagonal in M XM and df = f X f|U, U sufficiently small.) Lees’
topological immersion theorem [14] for manifolds of the same dimension
states:

THEOREM B. If no component of M, is closed, d: I'(M,, M,) -
R'(M,, ™M,) is a weak homotopy equivalence .

Here the “space” I'(M,, M,) of topological immersions must be treated as
a simplicial set and similarly for R*(7M,, TM,) [12]. Since each n-dimensional
microbundle contains an essentially unique R” bundle, and these two cate-
gories of bundles are equivalent by Kister’s theorem [10], we can also
consider R(7M,, TM,) to be the singular complex of the space of R" bundle
representations. Lees’ theorem is proved following the scheme of Haefliger
and Poenaru [5] for piecewise linear immersions after proving a topological
isotopy extension theorem based on the work of Kirby [8].

By taking essentially the smooth singular complex I°(V), V,) of I®(V,, V)
and the singular complex R*(TV,, TV,) of R(TV,, TV,) we get a homotopy
commutative diagram:

Py, V) —2—s R5TV,, TV,)

F ¢

Iy, v —%— R'Gv,, 17,)

where F is obtained by forgetting the smooth structure and ¢ by embedding
TV as a neighborhood of the diagonal in ¥ X V via the exponential map and
observing that the topological differential and smooth differential then agree
up to a natural homotopy.

As an example, if TM" is trivial, i.e., equivalent to M X R", we can
obviously construct a microbundle representation of M into 7R". By
Theorem B, if M is open, there is a topological immersion a: M — R”, which
defines a smooth structure M, on M by Lemma 1.

More generally (and avoiding technicalities), if M contains a vector
bundle £ and U is a contractible open set of M, £ U is trivial and we have a
vector bundle representation {§{U — TR" and hence a microbundle represen-
tation 7U = 7M|U — 7R", which induces a smoothing of U. Further, because
the smoothing of U corresponds to the trivialization of £|U, if U’ is another
such neighborhood, the smoothing of U N U’ can be extended to a
smoothing of U’ corresponding to £ U’. That is, by Theorem A (relative
version), there is a smooth immersion f of U N U’ in R" whose differential
extends to a vector bundle representation of £ U’ — TR". By Theorem B
(relative version), f extends to a topological immersion f': U’ — R” which
induces a smooth structure on U’ extending that on U N U’. Thus by
induction over a countable open cover we get a smoothing of M correspon-
ding to the reduction £ of 7M, provided M is open.

Define two smooth structures M,, M, on a topological manifold M to be
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isotopic if id,, is ambient isotopic as a homeomorphism of M, onto M, to a
diffeomorphism. Then in [12] (see also [9]), we prove for general (in particu-
lar, closed) M:

THEOREM C. If n # 4, the isotopy classes of smoothings of M" are in bijective
correspondence with the homotopy classes of reductions of TM to a vector bundle.

The condition n # 4 comes from the fact that the immersion theorem does
not apply to closed manifolds so that we have to apply it to M — p. In order
to extend the smoothing over p, and to prove uniqueness up to isotopy, the
smoothing near p has to be “straightened out” and this requires engulfing
techniques which hold for n > 5. The case n < 3 is classical.

Now homotopy classes of reductions of 7M correspond to homotopy
classes of lifts of the classifying map 7: M — B Top, of the tangent R"
bundle to BO,. Here Top,, is the group of homeomorphisms of R" with the
C -topology and O, is the orthogonal group. The map of classifying spaces
BO, — B Top, may be considered as a fibre space with fibre Top,/ O,. Thus
the obstructions to smoothing and uniqueness lie in #;,(Top,/0,), i < n.

The analogue of the fact that O,,,/0, = S" is the result [11] that
Top,,+1/Top, = 8" X BC(S™). The group C(S") is the pseudoisotopy or
concordance group of S”; i.e., homeomorphisms of I X S”, I = [0, 1], which
are the identity on 0 X S”. Thus we have a homotopy theoretic fibration
Top,/ 0, = Top,, 1/ O, with fibre C(S"). For n < 3 every manifold has a
unique smoothing up to isotopy. For n > 5, it can be shown that 7;C(S") =
0 for i < n + 1. In fact, by surgery arguments of [7] and [16], 7,C(S") =
7,CP!(S™), the piecewise linear group. The result then follows from Haefliger
and Wall’s analysis of =, PL,, ,/ PL,, see [6]. Hence

@,(Top,/0,) = m(Top/0), i<n+]1,
where
Top = in’ctl_)Igm Top, and 0 = Lim O,

under inclusion. Finally, the computation of #;Top/O can be reduced to
computing homotopy groups of spheres by surgery methods. In principle,
therefore, one can compute the obstruction groups.

2. Equivariant smoothing. Let G be a finite group. A topological or smooth
G-immersion of G-manifolds is just an immersion which is a G-map. The
equivariant version of Lemma 1 is:

LEMMA 1 EQ. 4 topological G-immersion o of a topological G-manifold M"
into a smooth G-manifold V" defines a unique equivariant smooth structure M,
on M such that a becomes an equivariant smooth immersion.

If V is a smooth G-manifold, the differential of the action of G on V
induces an action of G on TV making it into a G-vector bundle [3] and [17]:

DEFINITION. A G-vector bundle is a vector bundle p: E — B where E and B
are G-spaces, p is a G-map, and the action of G on E is through vector
bundle maps.

The differential of a smooth G-immersion f: VT — V7 induces a G-bundle
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homomorphism df: TV, — TV, which is an isomorphism of fibres. Let
R;(TV,, TV,) be the space of G-vector bundle representations and
I1Z(V,, V,) the space of G-immersions. Bierstone [3] has given an equivariant
Gromov theory proving in particular a G-version of Theorem A. To state it
we first need the definitions:

DEFINITION (BREDON [4]). A topological G-manifold M is called locally
smooth if M has an atlas of G-invariant open sets U, such that each U admits
an equivariant smoothing.

DEFINITION. Let M, be the union of orbits of type (H). My, is G-
invariant and a bundle over M4,/ G with fibre G/H [4]. If M is a (locally)
smooth G-manifold, My, is a (locally) smooth submanifold. We say M
satisfies the Bierstone Condition if no G-component of M, is a closed
manifold. (A G-component of M, is the preimage of a component of

M(H)/G)

THEOREM A EQ. (BIERSTONE [3]). If V), V, are smooth G-manifolds of the
same dimension and V, satisfies the Bierstone Condition, d: IZ(V,, V,) —
R;(TV,, TV,) is a weak homotopy equivalence.

Again this theorem has a semisimplicial version. By methods analogous to
the G-trivial case we get a G-version of Theorem B.

THEOREM B EQ. If M,, M, are locally smooth G-manifolds of the same
dimension and M, satisfies the Bierstone Condition, d: I{(M,, M,) —
R&(TM, ™)) is a weak homotopy equivalence.

Again I (M,, M,) and R.(TM,, TM,) are simplicial sets. Also M is a
G-microbundle; i.e., G acts on the total space through microbundle maps.

The notion of local triviality for G-vector bundles is somewhat more
involved than for ordinary vector bundles: If £ is a G-vector bundle over a
completely regular G-space X, for each x € X there is a slice S, (i.e., the orbit
Gx through x has a G-neighborhood GS,, G-equivalent to G Xg, S,), such
that £|GS, is equivalent to the G-vector bundle 1,(S,): G X ¢ (S, X R”)->
G X, SJt (obvious projection), where R, is an orthogonal G, space, p: Gx -
O, a representation.

Note that since M is locally smooth 7M is locally G-equivalent to a
G-vector bundle and hence locally G-trivial in the above sense. One may
prove a G-Kister theorem for locally G-trivial microbundles and show the
category of locally G-trivial microbundles coincides with the category of
locally G-trivial G-R"” bundles.

Now T(G Xg R))= G X5 (R} X R]) and we have an obvious G-
vector bundle map of 1,(S,) - T(G X, Ry) sending S, to 0 € R;.

Thus again we have that if TM contains a G-vector bundle § we can cover
M by G-invariant neighborhoods U = GS, such that §U is G-trivial and
hence we get a G-immersion U— G Xg R" and a G-smoothing of U by
Lemma 1 eq. Then using Theorems A eq. and B eq., we get by an argument
completely analogous to the G-trivial case that if M satisfies the Bierstone
Condition and 7M reduces to a G-vector bundle £, then M has a G-smoothing
corresponding to the reduction of M to £ (cf. [2]).

To obtain a result for arbitrary G-manifolds we must use a G-engulfing
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theorem. This is proved from the ordinary engulfing theorem by inducing up
the orbit types and leads to:

THEOREM C EQ. If dim H # 4 for any H C G, the isotopy classes of
G-smoothings of M are in bijective correspondence with the homotopy classes of
G-vector bundle reductions of TM.

We remark that it isn’t necessary to assume M is locally smooth, because it
is easy to see that if M reduces to a G-vector bundle then M must be locally
smooth.

The obstructions to reducing M to a G-vector bundle lies in 7,(Tops/ O/),
where p: H— O, and Topf, (Of) is the subgroup of Top, (O,) commuting
with the orthogonal action of H.

Now R} = R¥ ® R/, k + | = n, where we have split off the trivial repre-
sentations. Write Top? = Topg,, and Of = OF,,. Then if we let C*(S**/)
be the subgroup of C(S**’) commuting with the action of H on I X S**/
(trivial action on I, orthogonal action on S*¥*’), we again have a fibration:

ce (Sk” ) T092+1/0/?+1 - T0P2+1+1/0/f'+:+1-

Here however, the groups 7,C*(S**’) are not zero in general. In principle,
they can be computed by methods of Anderson and Hsiang [1]. In particular,
if H acts freely on S$*~! via a then 7,C*(S"*') = m,C*(S"*'mod S’) ®
7,C(S’); and if kK + [ > 6, Anderson and Hsiang have shown:
K—1+l+i(Z(H))’ i<l-1

Ky(Z(H)), i=1-1

Wh(H), i=1

m_;C(LX D'*Y), i>1

m,C(S"*'mod §') =

where L = §*~'/H and the K _ ; are Bass’ algebraic K groups.

Let M" be a locally smooth H-manifold for which the action is semifree.
Suppose dim M¥ = I, n = k + I and a: H — O, is the representation of H
on the normal disc to M%. Then the obstructions to H-smoothing lie in
Topg,,;/ O2,, and in Top,/ O, if dim M* # 4 and dim M # 4. For this we
need know m,(Topg .,/ O, ) only for i < / and «; Top, /O, fori < n.

Now Top,/ O, is a retract of Topk,,/O¢,,. We also have the inclusion of
A* (S Y08 — Topg,,/0%.,, where A*(S* ') = group of
homeomorphisms of $*~! commuting with . It can be shown that this map
induces a split injection

‘”if;a(sk_l )/ O¢ = w(Topi 41/ Oy, Top,/ Oy), i <L

where 4*(S*~') = group of block homeomorphisms of S*~! commuting
with « (see [12]). Hence we get a split injection:

7(4°(S*71)/ Og ) ® m(Top,/ O;) > Tops1/ Oy i < L.

Further, from the fibration above, using the fact that 7,C(S') =0,i < / + 1,
we get the exact sequence:
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0-> "’1+1(1‘i0‘(sk_| )/01?) ® 741 (Top41/ 04y )
= M1 (TOPG 4 141/ O 141 ) = Whi(H) - m(Topt 1/ Oy ;)
— 7(Topi 1141/ Oks1+1) = Ko (Z(H)) - 71 (Topis1/ Ofer)
= 7y (ToPk 141/ Ok141 ) > K_y4 (Z (H)) - 7o(Topg 41/ Oc+1)

= To(Topk 4141/ Of141) = K_; (Z (H)).

Of course, m.,(Top;.1/0y41) = m.(Top/0). Also m(A*(S*"")/0g)
can be computed up to extension from the surgery exact sequence for L.

Finally, we note the following results of Bass and others for the algebraic
K-groups.

For 7 abelian, K_;(Z (7)) = 0forj > 1.

For 7 abelian and prime power order, K_,(Z (7)) = 0.

For 7 cyclic of order p, Ko(Z (m)) = class group of Q (e*™/7).

For 7 finite K(Z (H)) is finite.
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