EQUIVARIANT SMOOTHING THEORY

BY R. LASHOF

Given a finite group G acting on a topological manifold M, when can we put a smooth structure on M such that G acts smoothly? Our approach to this problem is via equivariant immersion theory. This generalizes the immersion theory approach of [12], and we begin by reviewing these ideas. Details will appear in [13].

1. The immersion approach to smoothing theory. A map $\alpha: M_1^n \to M_2^n$ between *n*-dimensional topological manifolds is called a (topological) immersion if α is a local homeomorphism. Of course, a smooth immersion is a topological immersion of the underlying topological manifolds. The basis of the immersion approach to smoothing is the following trivial lemma:

LEMMA 1. A topological immersion α of a topological manifold M^n into a smooth manifold V^n defines a unique smooth structure on M such that α becomes a smooth immersion.

In fact, define smooth local coordinates on M by pulling back the local coordinates on V via the local homeomorphisms. We will denote this smooth structure by M_{α} .

Recall that the differential of a smooth immersion $f: V_1^n \to V_2^n$ induces a bundle homomorphism $df: TV_1 \to TV_2$ of the tangent vector bundles which is an isomorphism on fibres. Call such a bundle homomorphism a representation and let $R(TV_1, TV_2)$ be the space of representations with the C^0 -topology and $I^\infty(V_1, V_2)$ the space of smooth immersions with the C^∞ -topology. The Smale-Hirsch theorem for manifolds of the same dimension states:

THEOREM A (HIRSCH). If no component of V_1 is closed, d: $I^{\infty}(V_1, V_2) \rightarrow R(TV_1, TV_2)$ is a weak homotopy equivalence. The relative version for immersions modulo a given immersion on a neighborhood of a closed subset A holds, provided $\overline{M}-A$ has no compact components.

For a topological manifold M we have Milnor's tangent microbundle [15], [12]. Since the fibre of τM over $p \in M$ is essentially a neighborhood germ, a local homeomorphism $f: M_1 \to M_2$ defines a microbundle representation

An invited address delivered to the American Mathematical Society in St. Louis, Missouri, January 27, 1977; received by the editors May 10, 1977.

AMS (MOS) subject classifications (1970). Primary 57E10, 57E15, 57D10; Secondary 57A30, 57A35, 57A55, 55F35.

Key words and phrases. Compact transformation groups, smoothing, topological manifolds, engulfing, immersions, classifying spaces.

2 R. LASHOF

 $df: \tau M_1 \to \tau M_2$. (Explicitly, the total space of τM is any neighborhood U of the diagonal in $M \times M$ and $df = f \times f | U$, U sufficiently small.) Lees' topological immersion theorem [14] for manifolds of the same dimension states:

THEOREM B. If no component of M_1 is closed, $d: I^t(M_1, M_2) \to R^t(\tau M_1, \tau M_2)$ is a weak homotopy equivalence.

Here the "space" $I'(M_1, M_2)$ of topological immersions must be treated as a simplicial set and similarly for $R'(\tau M_1, \tau M_2)$ [12]. Since each *n*-dimensional microbundle contains an essentially unique R^n bundle, and these two categories of bundles are equivalent by Kister's theorem [10], we can also consider $R(\tau M_1, \tau M_2)$ to be the singular complex of the space of R^n bundle representations. Lees' theorem is proved following the scheme of Haefliger and Poenaru [5] for piecewise linear immersions after proving a topological isotopy extension theorem based on the work of Kirby [8].

By taking essentially the smooth singular complex $I^s(V_1, V_2)$ of $I^{\infty}(V_1, V_2)$ and the singular complex $R^s(TV_1, TV_2)$ of $R(TV_1, TV_2)$ we get a homotopy commutative diagram:

where F is obtained by forgetting the smooth structure and ϕ by embedding TV as a neighborhood of the diagonal in $V \times V$ via the exponential map and observing that the topological differential and smooth differential then agree up to a natural homotopy.

As an example, if τM^n is trivial, i.e., equivalent to $M \times R^n$, we can obviously construct a microbundle representation of τM into τR^n . By Theorem B, if M is open, there is a topological immersion $\alpha: M \to R^n$, which defines a smooth structure M_{α} on M by Lemma 1.

More generally (and avoiding technicalities), if τM contains a vector bundle ξ and U is a contractible open set of M, $\xi|U$ is trivial and we have a vector bundle representation $\xi|U \to TR^n$ and hence a microbundle representation $\tau U = \tau M|U \to \tau R^n$, which induces a smoothing of U. Further, because the smoothing of U corresponds to the trivialization of $\xi|U$, if U' is another such neighborhood, the smoothing of $U \cap U'$ can be extended to a smoothing of U' corresponding to $\xi|U'$. That is, by Theorem A (relative version), there is a smooth immersion f of f of

Define two smooth structures M_{α} , M_{β} on a topological manifold M to be

isotopic if id_M is ambient isotopic as a homeomorphism of M_{α} onto M_{β} to a diffeomorphism. Then in [12] (see also [9]), we prove for general (in particular, closed) M:

THEOREM C. If $n \neq 4$, the isotopy classes of smoothings of M^n are in bijective correspondence with the homotopy classes of reductions of τM to a vector bundle.

The condition $n \neq 4$ comes from the fact that the immersion theorem does not apply to closed manifolds so that we have to apply it to M - p. In order to extend the smoothing over p, and to prove uniqueness up to isotopy, the smoothing near p has to be "straightened out" and this requires engulfing techniques which hold for $n \geq 5$. The case $n \leq 3$ is classical.

Now homotopy classes of reductions of τM correspond to homotopy classes of lifts of the classifying map $\tau \colon M \to B$ Top_n of the tangent R^n bundle to BO_n . Here Top_n is the group of homeomorphisms of R^n with the C^0 -topology and O_n is the orthogonal group. The map of classifying spaces $BO_n \to B$ Top_n may be considered as a fibre space with fibre Top_n/ O_n . Thus the obstructions to smoothing and uniqueness lie in $\pi_i(\text{Top}_n/O_n)$, $i \le n$.

The analogue of the fact that $O_{n+1}/O_n = S^n$ is the result [11] that $\operatorname{Top}_{n+1}/\operatorname{Top}_n = S^n \times BC(S^n)$. The group $C(S^n)$ is the pseudoisotopy or concordance group of S^n ; i.e., homeomorphisms of $I \times S^n$, I = [0, 1], which are the identity on $0 \times S^n$. Thus we have a homotopy theoretic fibration $\operatorname{Top}_n/O_n \to \operatorname{Top}_{n+1}/O_{n+1}$ with fibre $C(S^n)$. For $n \leq 3$ every manifold has a unique smoothing up to isotopy. For $n \geq 5$, it can be shown that $\pi_i C(S^n) = 0$ for $i \leq n+1$. In fact, by surgery arguments of [7] and [16], $\pi_i C(S^n) = \pi_i C^{pl}(S^n)$, the piecewise linear group. The result then follows from Haefliger and Wall's analysis of $\pi_i PL_{n+1}/PL_n$, see [6]. Hence

$$\pi_i(\text{Top}_n/O_n) = \pi_i(\text{Top}/O), \quad i \leq n+1,$$

where

Top =
$$\inf_{n\to\infty} \text{Lim Top}_n$$
 and $0 = \text{Lim } O_n$

under inclusion. Finally, the computation of $\pi_i \text{Top}/O$ can be reduced to computing homotopy groups of spheres by surgery methods. In principle, therefore, one can compute the obstruction groups.

2. Equivariant smoothing. Let G be a finite group. A topological or smooth G-immersion of G-manifolds is just an immersion which is a G-map. The equivariant version of Lemma 1 is:

LEMMA 1 EQ. A topological G-immersion α of a topological G-manifold M^n into a smooth G-manifold V^n defines a unique equivariant smooth structure M_{α} on M such that α becomes an equivariant smooth immersion.

If V is a smooth G-manifold, the differential of the action of G on V induces an action of G on TV making it into a G-vector bundle [3] and [17]:

DEFINITION. A G-vector bundle is a vector bundle $p: E \rightarrow B$ where E and B are G-spaces, p is a G-map, and the action of G on E is through vector bundle maps.

The differential of a smooth G-immersion $f: V_1^n \to V_2^n$ induces a G-bundle

R. LASHOF

homomorphism $df: TV_1 \to TV_2$ which is an isomorphism of fibres. Let $R_G(TV_1, TV_2)$ be the space of G-vector bundle representations and $I_G^{\infty}(V_1, V_2)$ the space of G-immersions. Bierstone [3] has given an equivariant Gromov theory proving in particular a G-version of Theorem A. To state it we first need the definitions:

DEFINITION (BREDON [4]). A topological G-manifold M is called *locally smooth* if M has an atlas of G-invariant open sets U, such that each U admits an equivariant smoothing.

DEFINITION. Let $M_{(H)}$ be the union of orbits of type (H). $M_{(H)}$ is G-invariant and a bundle over $M_{(H)}/G$ with fibre G/H [4]. If M is a (locally) smooth G-manifold, $M_{(H)}$ is a (locally) smooth submanifold. We say M satisfies the Bierstone Condition if no G-component of $M_{(H)}$ is a closed manifold. (A G-component of $M_{(H)}$ is the preimage of a component of $M_{(H)}/G$.)

THEOREM A EQ. (BIERSTONE [3]). If V_1 , V_2 are smooth G-manifolds of the same dimension and V_1 satisfies the Bierstone Condition, $d: I_G^{\infty}(V_1, V_2) \rightarrow R_G(TV_1, TV_2)$ is a weak homotopy equivalence.

Again this theorem has a semisimplicial version. By methods analogous to the G-trivial case we get a G-version of Theorem B.

THEOREM B EQ. If M_1 , M_2 are locally smooth G-manifolds of the same dimension and M_1 satisfies the Bierstone Condition, $d: I_G^t(M_1, M_2) \to R_G^t(\tau M_1, \tau M_2)$ is a weak homotopy equivalence.

Again $I_G^t(M_1, M_2)$ and $R_G^t(\tau M_1, \tau M_2)$ are simplicial sets. Also τM is a G-microbundle; i.e., G acts on the total space through microbundle maps.

The notion of local triviality for G-vector bundles is somewhat more involved than for ordinary vector bundles: If ξ is a G-vector bundle over a completely regular G-space X, for each $x \in X$ there is a slice S_x (i.e., the orbit Gx through x has a G-neighborhood GS_x , G-equivalent to $G \times_{G_x} S_x$), such that $\xi | GS_x$ is equivalent to the G-vector bundle $1_{\rho}(S_x)$: $G \times_{G_x} (S_x \times R_{\rho}^n) \to G \times_{G_x} S_x$ (obvious projection), where R_{ρ}^n is an orthogonal G_x space, $\rho: G_x \to O_n$ a representation.

Note that since M is locally smooth τM is locally G-equivalent to a G-vector bundle and hence locally G-trivial in the above sense. One may prove a G-Kister theorem for locally G-trivial microbundles and show the category of locally G-trivial microbundles coincides with the category of locally G-trivial G-Rⁿ bundles.

Now $T(G \times_{G_x} R_\rho^n) = G \times_{G_x} (R_\rho^n \times R_\rho^n)$ and we have an obvious G-vector bundle map of $1_\rho(S_x) \to T(G \times_{G_x} R_\rho^n)$ sending S_x to $0 \in R_\rho^n$.

Thus again we have that if τM contains a G-vector bundle ξ we can cover M by G-invariant neighborhoods $U = GS_x$ such that $\xi | U$ is G-trivial and hence we get a G-immersion $U \to G \times_{G_x} R_\rho^n$ and a G-smoothing of U by Lemma 1 eq. Then using Theorems A eq. and B eq., we get by an argument completely analogous to the G-trivial case that if M satisfies the Bierstone Condition and τM reduces to a G-vector bundle ξ , then M has a G-smoothing corresponding to the reduction of τM to ξ (cf. [2]).

To obtain a result for arbitrary G-manifolds we must use a G-engulfing

theorem. This is proved from the ordinary engulfing theorem by inducing up the orbit types and leads to:

THEOREM C Eq. If dim $H \neq 4$ for any $H \subset G$, the isotopy classes of G-smoothings of M are in bijective correspondence with the homotopy classes of G-vector bundle reductions of τM .

We remark that it isn't necessary to assume M is locally smooth, because it is easy to see that if τM reduces to a G-vector bundle then M must be locally smooth.

The obstructions to reducing τM to a G-vector bundle lies in $\pi_i(\operatorname{Top}_n^\rho/O_n^\rho)$, where $\rho: H \to O_n$ and $\operatorname{Top}_n^\rho(O_n^\rho)$ is the subgroup of $\operatorname{Top}_n(O_n)$ commuting with the orthogonal action of H.

Now $R_{\rho}^{n} = R_{\alpha}^{k} \oplus R^{l}$, k + l = n, where we have split off the trivial representations. Write $\text{Top}_{n}^{\rho} = \text{Top}_{k+l}^{\alpha}$ and $O_{n}^{\rho} = O_{k+l}^{\alpha}$. Then if we let $C^{\alpha}(S^{k+l})$ be the subgroup of $C(S^{k+l})$ commuting with the action of H on $I \times S^{k+l}$ (trivial action on I, orthogonal action on S^{k+l}), we again have a fibration:

$$C^{\alpha}(S^{k+l}) \rightarrow \operatorname{Top}_{k+l}^{\alpha}/O_{k+l}^{\alpha} \rightarrow \operatorname{Top}_{k+l+1}^{\alpha}/O_{k+l+1}^{\alpha}$$

Here however, the groups $\pi_i C^{\alpha}(S^{k+l})$ are not zero in general. In principle, they can be computed by methods of Anderson and Hsiang [1]. In particular, if H acts freely on S^{h-1} via α then $\pi_i C^{\alpha}(S^{h+l}) \simeq \pi_i C^{\alpha}(S^{h+l} \mod S^l) \oplus \pi_i C(S^l)$; and if $k+l \geq 6$, Anderson and Hsiang have shown:

$$\pi_{i}C(S^{h+l} \text{mod } S^{l}) \simeq \frac{K_{-l+1+i}(Z(H)), \quad i < l-1}{\text{Wh}_{1}(H), \quad i = l-1}$$

$$\pi_{i-l-1}C(L \times D^{l+1}), \quad i > l$$

where $L = S^{h-1}/H$ and the K_{-i} are Bass' algebraic K groups.

Let M^n be a locally smooth H-manifold for which the action is semifree. Suppose dim $M^H = l$, n = k + l and $\alpha: H \to O_k$ is the representation of H on the normal disc to M^H . Then the obstructions to H-smoothing lie in $\text{Top}_{k+l}^A/O_{k+l}^A$ and in Top_n/O_n if dim $M^H \neq 4$ and dim $M \neq 4$. For this we need know $\pi_i(\text{Top}_{k+l}^A/O_{k+l}^A)$ only for $i \leq l$ and π_i Top_n/O_n for $i \leq n$.

need know $\pi_i(\operatorname{Top}_{k+l}^\alpha/O_{k+l}^\alpha)$ only for i < l and $\pi_i \operatorname{Top}_n/O_n$ for i < n. Now Top_i/O_l is a retract of $\operatorname{Top}_{k+l}^\alpha/O_{k+l}^\alpha$. We also have the inclusion of $A^{\alpha}(S^{k-1})/O_k^{\alpha} \to \operatorname{Top}_{k+l}^\alpha/O_{k+l}^\alpha$, where $A^{\alpha}(S^{k-1}) = \operatorname{group}$ of homeomorphisms of S^{k-1} commuting with α . It can be shown that this map induces a split injection

$$\pi_i \tilde{A}^{\alpha}(S^{k-1})/O_k^{\alpha} \to \pi_i(\operatorname{Top}_{k+l}^{\alpha}/O_{k+l}^{\alpha}, \operatorname{Top}_l/O_l), i \leq l;$$

where $\tilde{A}^{\alpha}(S^{k-1})$ = group of block homeomorphisms of S^{k-1} commuting with α (see [12]). Hence we get a split injection:

$$\pi_i \left(\tilde{A}^{\alpha}(S^{k-1}) / O_k^{\alpha} \right) \oplus \pi_i(\operatorname{Top}_i / O_i) \to \pi_i \operatorname{Top}_{k+l}^{\alpha} / O_{k+l}^{\alpha}, \quad i \leq l.$$

Further, from the fibration above, using the fact that $\pi_i C(S^l) = 0$, i < l + 1, we get the exact sequence:

$$0 \to \pi_{l+1} \left(\tilde{A}^{\alpha} (S^{k-1}) / O_k^{\alpha} \right) \oplus \pi_{l+1} (\operatorname{Top}_{l+1} / O_{l+1})$$

$$\to \pi_{l+1} \left(\operatorname{Top}_{k+l+1}^{\alpha} / O_{k+l+1}^{\alpha} \right) \to \operatorname{Wh}_{1}(H) \to \pi_{l} (\operatorname{Top}_{k+l}^{\alpha} / O_{k+l}^{\alpha})$$

$$\to \pi \left(\operatorname{Top}_{k+l+1}^{\alpha} / O_{k+l+1}^{\alpha} \right) \to \tilde{K}_{0} \left(Z(H) \right) \to \pi_{l-1} \left(\operatorname{Top}_{k+l}^{\alpha} / O_{k+l}^{\alpha} \right)$$

$$\to \pi_{l-1} \left(\operatorname{Top}_{k+l+1}^{\alpha} / O_{k+l+1}^{\alpha} \right) \to K_{-l+1} \left(Z(H) \right) \to \pi_{0} \left(\operatorname{Top}_{k+l}^{\alpha} / O_{k+l}^{\alpha} \right)$$

$$\to \pi_{0} \left(\operatorname{Top}_{k+l+1}^{\alpha} / O_{k+l+1}^{\alpha} \right) \to K_{-l} \left(Z(H) \right).$$

Of course, $\pi_{l+1}(\text{Top}_{l+1}/O_{l+1}) \simeq \pi_{l+1}(\text{Top}/O)$. Also $\pi_i(\tilde{A}^{\alpha}(S^{k-1})/O_k^{\alpha})$ can be computed up to extension from the surgery exact sequence for L.

Finally, we note the following results of Bass and others for the algebraic K-groups.

For π abelian, $K_{-i}(Z(\pi)) = 0$ for j > 1.

For π abelian and prime power order, $K_{-1}(Z(\pi)) = 0$.

For π cyclic of order p, $\tilde{K}_0(Z(\pi)) = \text{class group of } Q(e^{2\pi i/p})$.

For π finite $\tilde{K}_0(Z(H))$ is finite.

REFERENCES

- 1. D. Anderson and W. C. Hsiang, The functors K_{-i} and pseudo-isotopies of polyhedra, Ann. of Math. (2) 105 (1977), 201-224.
- 2. G. Anderson, Classification of structures on abstract manifolds, Mass. Inst. of Tech., Cambridge, 1976 (preprint).
 - 3. E. Bierstone, Equivariant Gravov theory, Topology 13 (1974), 327-346.
 - 4. G. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972.
- 5. A. Haefliger and V. Poenaru, La classification des immersions combinatoires, Inst. Hautes Études Sci. Publ. Math. 23 (1964), 75-91.
- 6. A. Haefliger and C. T. C. Wall, Piecewise linear bundles in the stable range, Topology 4 (1965), 209-214.
- 7. W. C. Hsiang and J. Shaneson, Fake tori, the annulus conjecture, and the conjecture of Kirby, Proc. Nat. Acad. Sci. USA 62 (1969), 687-691.
- 8. R. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. (2) 89 (1969), 575-582.
- 9. R. Kirby and L. Siebenmann, Essays on topological manifolds, smoothings and triangulations (to appear).
 - 10. J. Kister, Microbundles are fibre bundles, Ann. of Math. (2) 80 (1964), 190-199.
 - 11. N. Kuiper and R. Lashof, Microbundles and bundles. I, Invent. Math. 1 (1968), 1-17.
- 12. R. Lashof, *The immersion approach to triangulation and smoothing*, (AMS Summer Inst., Madison, Wisc., 1970) Proc. Sympos. in Pure Math., vol. 22, Amer. Math. Soc., Providence, R.I., 1971, pp. 131–164.
- 13. R. Lashof and M. Rothenberg, G-smoothing theory, (Proc. AMS Summer Inst., Stanford, 1976) (to appear).
- 14. J. Lees, Immersions and surgeries on topological manifolds, Bull. Amer. Math. Soc. 75 (1969), 529-534.
- 15. J. Milnor, *Microbundles*, Proc. Internat. Congress Math. (Stockholm, 1962), Inst. Mittag-Leffler, Djorsholm, 1963.
- 16. C. T. C. Wall, On homotopy tori and the annulus theorem, Bull. London Math. Soc. 1 (1969), 95-97.
 - 17. A. Wasserman, Equivariant differential topology, Topology 8 (1969), 127-150.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637