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Let k be a totally real number field of degree n > 2 with conjugate fields 
k = &(1 \ . . . , k^n\ Let 7(f) denote the group of fractional ideals of k gener­
ated by those integral ideals relatively prime to a given integral ideal, f. Let 
S(f ) denote the subgroup of 1(f) generated by those principal integral ideals (a) 
with a = 1 (mod F). The quotient group H = 7(f)/5(f ) is the ray class group 
(mod f ) of k and corresponds via class field theory to a totally real abelian ex­
tension F of h 

We define the character of sign X(a) on k by 

X(a) = f l sgn(a</>). 
/ - 2 

Let S 0 denote the subgroup of all (a) in S( f ) such that X(a) = 1 and 2 the set 
of all (a) in £(f ) such that X(a) = - 1. It can happen that E0 = ? = 5(f ). 
The condition that this not occur is that for all units e of k congruent to 1 
(mod f ), we must have X(e) = 1 , We assume that f satisfies this condition, and 
let G = /(f)/£0. By class field theory, G corresponds to a real abelian extension 
K of k which is a quadratic extension of F. 

For any g in G, let 

?(*,&)= £ Mar5 

where the sum is over all integral ideals ?l of S. Let 

e(© = exp[2f'(0,£)], e = 6(Ç0). 

CONJECTURE 1. 77*e numbers e(<£) #re conjugate algebraic integers in K. 
If $ is a first degree prime ideal in E of norm p then the explicit reciprocity law 
of class field theory is given by 

e^ = e(E)(modjD). 

Our conjecture thus provides an answer to Hilbert's twelfth problem for 
totally real fields k. The purpose of this note is to present the first numerical 
example of Conjecture 1 with a nonabelian ground field k. Conjecture 1 implies 
that e(g2) = e(E)"1 is a unit, that 
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is in F and that 

g(x) = n (x - (*(©) = x c- o v i / f K / 

S(modS0 ,5) /=0 

has coefficients in k = fc^\ 
We take * = fc(1) = 0(0°}) where 

0 = pO) = 3.07911886452947847 • • • 

is one of the three real roots of 

x3 - x2 - 9x + 8 = 0. 

The field k has class-number 3, discriminant 2597 = 72 • 53 (1, 0, j32 form an 
integral basis) and every unit e of it has X(e) = 1. Thus we may take f = (1); 
F is then the Hilbert class field of k and K is a sixth degree extension of k which 
is a quadratic extension of F. The group G is cyclic of order 6 and is generated 
by the element S^ containing the unique prime ideal }o2 in k of norm 2. We let 
Ey = g{, 0 < ƒ < 5. In particular S = £3. (Indeed p | = (0) and X(j8) = - 1.) 

The following values of f'(0, S) were found on a computer which worked 
internally with an accuracy of about 16 decimal places: 

2£'(0, S0) = 2.6229258798145494 = -2f'(0, £3), 

2?'(0, <J2) = -.72668091960461237 = -2£'(0, S s), 

2£'(0, C4) = -.55674277199362199 = - 2£'(0, &x). 

We put e. = e(Sy), a ; = a(Sy). We then get 

g(x) = (x- Op) (x - a2) (x - a4) 

= x3 - 18.718329575489666x2 + 73.354291283859894* 

-81.914383130290574. 
The coefficients of g(x) are supposed to be in k = k^ (in other words, we are 
getting a particular embedding of k out of Conjecture 1 as well as a particular 
embedding of A" and F). Conjecture 1 yields bounds on 0 ^ (/ = 2, 3) and so 
leads us to the numbers 

jö2 + 3j3 = 18.718329575489740, 

5j32 + 120 - 11 - 73.354291283860260, 

6|32 + 13/3 - 15 = 81.914383130291046, 

which must be 0{, 02 and 63 respectively if Conjecture 1 holds. 
It may be checked that any root A of 
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x3 - (02 + 3p)x2 + (502 + 12/3 — 11)JC - (6 f + 130 - 15) = 0 

does indeed generate F and that either root E oix + x~l = A is & unit in K 
which in fact generates K over g. Lastly, the reciprocity law is as given by Con­
jecture 1. 

Let e = e0e2e4. Conjecture 1 implies that e is the relative norm of e 
from K to a quadratic extension K' of fc. We have shown without assuming 
Conjecture 1 that e' generates the unique quadratic extension of k lying in K 
and that 

e' + (e'yl = 0 + 1 . 

This serves both as a check on the reciprocity part of Conjecture 1 and on the 
accuracy of the computation of the numbers f '(0, E). 

Some comments about the actual computation may be useful. The func­
tion 

is given by a triple integral of a three-dimensional 6-function and we are inter­
ested in the value of this integral at s = 0. The triple integral splits into two 
pieces via the inversion formula for 0-functions. At s = 0, one of these pieces 
splits into an infinite sum of single integrals of the form 

Ix{a) = f°° exp[-a(x + 2x~l/2)]dx 
J o 

while the other piece splits into an infinite sum of double integrals of the form 

'*(*) = f °° f °° (*0~1/2exp[-f(x + 2x~V2)]dt dx. 
J 0 J a 

The interior integral in I2 for a given x was integrated using the continued 
fraction expansion of the incomplete gamma function as analyzed by R. Terras 
[2]. The integral over x in I2 was then computed numerically as was the inte­
gral for 7j. Several hundred integrals of each type were required in the compu­
tation. In the procedure finally used, the field K cost $7. Still, it would be very 
worthwhile for future computations to have a rapid accurate algorithm for com­
puting /j and I2 for a wide range of a. 

More details regarding this example, examples with real quadratic k and 
analogies with complex quadratic k will be found in [1]. 
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