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On an interval [a, b], we may place points f0,. * . , tn such that a = 10 < 
t! < * • * < tn = b. Using these points, called nodes, we may construct unique 
polynomials y0, . . . ,yn of degree n, such that, for 1 < i, ƒ < n>y£tj) = 1 and 
yt(tj) = 0 for ƒ =£ i. The Lagrange interpolating projection on the nodes t0,. • . , tn 

is the operator which takes any function ƒ continuous on [a, b] to the polynomial 
S?=oA )̂V/« It is easily seen that this projection is bounded for any degree n, for 
any interval [a, b], and for any set of nodes in [a, b]. The norm is easily shown 
to be the sup norm of A = SJLQI^I, called the Lebesgue function of the projec
tion, and thus the norm depends exclusively on the placement of tv . . . , tn_x. 
It is irrelevant, in attempting to minimize the norm, to move tQ or tn. Of the 
function A, it is true that A(^) = 1 for 0 < i < n, while if n > 2 and if t is not a 
node, then A(f) > 1. Let \x, . • . , \n be the values given by 

\ = sup A(0 for 1 < i < n. 
tG[ti_l9ti] 

Then ||A|| = max1</<wXf.. 
It was conjectured by Serge Bernstein in 1932 that the norm of the inter

polating projection is minimized when the nodes are so placed that \x = • • • = Xw, 
a conjecture rendered plausible, but by no means demonstrated, by the rather 
obvious fact that 

Tr>o>^rL> for l < /<«- l, 

and by the fact that moving any node into close proximity with one of its neigh
bors increases ||A|| without bound. This communication will give the following 
theorem and an outline of its proof in a series of lemmas. 

THEOREM. For any n>2,if the norm of the Lagrange interpolation oper
ator on an interval [a, b] with nodes a = t0 < tf < • • • < tn = b is to be mini
mized, then it is necessary that the local maximum values \x, . . . ,\n of the 
Lebesgue function be equalized. 

The proof of this theorem depends on the fact that (Xt, . . . , \n) is a dif-
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ferentiable function of tv . . . , tn_x. For 1 < / < n we denote by Xt the 
polynomial which agrees with A on (ti__l, tt). We denote by T{ the (unique) point 
in (ti__1, tt) at which Xfa) = \(. It is then established that, for 1 < i < n and 
1 < / < « ~ 1, d\t/dtj = -yÂj^Xfoj). Our theorem follows if we can show that, 
for any position of nodes, every n - 1 x « - l submatrix of (b\/dtj)^ is non-
singular (1 < i < n and 1 < ƒ < n - 1). Using the above expression for bXJdt^ 
we may with artful cancellations reach the equivalent matrix (#,•(£.•))«, for 1 < 
i<n9Kj<n-l9 where qft) = X'£t)l(t - r̂ ) is a polynomial of degree n - 2 
or less.1 Thus each « - 1 x ƒ2 - 1 submatrix of (qt(tj)) is nonsingular if and only 
if any n - 1 of qx, . . . , qn form a basis for the space of polynomials of degree 
n - 2 or less. In a succession of lemmas, we show that any n - 1 of q^, . . . , #w 

are indeed a basis. Here, for reasons of conserving space, the proofs are not given 
in full. 

LEMMA 1. The polynomials Xx and Xn have their full complement ofn 
roots on [a, b], and X[ and X'n have their full complement ofn-l roots on 
[a, b]. For each /, 2 < i < n - 1, the polynomial X. has exactly n-\ roots on 
[a, b], and X[ has at least n-2 roots on [a, b]. Each root of each of the above 
polynomials has multiplicity one, and each root of X\, 1 < i < n> is a local ex-
tremum of Xv 

PROOF OF LEMMA 1. An obvious counting argument suffices. 

LEMMA 2. For 2 < / < n, X\_ x and X\ have no common root, nor do X\ 
and X'n. 

PROOF. One uses Xt_ x + Xt = 2y-_ t and an analogous identity for Xt 

and Xn. If for example X'i_1 and X\ have a common root, then so does X[_x + 
o^J-15 for any real a. One then investigates the number of roots of Xt_ t + 
Wi-i* when a is chosen so that {Xi_l + ay^^if) = 0, at an assumed common 
root r of X\_ x and X\. 

LEMMA 3. All roots of X\ and X'n lie on [T1 , rn]. 

PROOF. Since X[ and X'n have no common root, one can investigate con
venient extreme configurations of tv . . . , tn_x. 

LEMMA 4. The roots of X[ and X'n alternate as we pass from rv to rn. 

PROOF. Similar to Lemma 3. 

LEMMA 5. Between rx and the first root ofX'n_ x appearing on [TX , rn], 
there is a root of X'n. The symmetric statement about rn, X'2, and X[ also holds. 

PROOF. Similar to Lemma 3. 

LEMMA 6. On the interval [rx, rn] the roots of X[, . . . , X'n lie in the 
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pattern 1, nf n - 1, . . . , 3, 2, 1, n, . . . , 4, 3, 2, 1, n, . . . , 1, n, n - 1, n - 2, 

. . . , 1, n, when a number i denotes a root of Xv 1 < / < n, and where i denotes 

the point r,-, 1 <i <n. 

PROOF. This proof uses the method of Lemmas 3, 4, 5, and the results of 

all previous lemmas, and the method of induction. 

COROLLARY OF LEMMA 6. The roots ofqv...,qn lie in the same loca

tions as those of X'v . . . , X'n, save that r p . . . , T„ are removed from the list 

PROOF. Clear. 

LEMMA 7. Without doing harm, we may assume that qfa^) > 0 for 1 < 
i < n. Under this convention, we have sgn qt(j^ = sgn qx{r^ and sgn qÂTJ) = 
-sgn qx (T() for ƒ ̂  i, where 2 < i, ƒ < n. 

PROOF. Follows easily from Lemma 6 and its Corollary. 

LEMMA 8. The set {qx, . . . , qn} ~ {qk} is linearly independent for any 
choice ofk, 1 <k <n. 

PROOF. We assume the existence of a nontrivial linear combination axqx + 
• • • -f Oinqn = 0, in which, for some k, 2 < k < n, we have assumed ak = 0, and 
also ax > 0. The sets N = {/|a; < 0 and 2 < ƒ < n] and P = {j\af > 0 and 2 < 
/ < n} are shown nonempty, and the polynomial N - axqx 4- S y ^ a ^ is shown 
to alternate sign at successive points r/5 1 < / < «, thus having at least n - 1 roots, 
while having degree no more than n - 2. The contradiction implies the lemma. 

Our theorem now follows from Lemma 8, in light of previous discussion. 
ADDED MAY 18, 1977. In the paper which gives details of the above 

theorem, I complete the proof of Bernstein's conjecture by proving that there is 
a unique choice of nodes which equalizes the \ . I have been informed by C. 
de Boor and A. Pinkus that they too, using the results of the present note, have 
completed the proof of Bernstein's conjecture. 
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