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2 <*ng(n)> * - > oo, A: = 1, 2, . . . , 
ne% 

under some general assumptions on {a^)^x. In (12), g denotes a suitable 
weighting function, and \ the set of square-free integers having exactly k 
prime factors. Although one of Bombieri's assumptions is usually not easy to 
verify for given (an)^==l, there is no doubt that his work is an important 
contribution to our knowledge of general sieve methods, which is likely to 
influence their future development. 

Hooley begins the chapters of his book with a historical survey on the 
relevant problem, and ends them with a discussion of other applications of the 
method or of possible relaxations of the hypothesis used. This practice is 
helpful to the reader and provides a good orientation of the subject. The book 
is written with great attention to detail. It affords an insight into the richness 
of the problems which can successfully be treated with the help of sieve 
methods. It can be recommended to anybody interested in sieve methods. 
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The reader may wonder what the title of Knopfmacher's book signifies. The 
word "abstract" refers to an axiomatic set-up of the material which is treated 
here within the framework of arithmetical semigroups, the standard example 
being the positive integers with their multiplicative structure. The word 
"analytic" refers to the admission of analytic functions and Cauchy's theorem 
as tools in proving theorems. Finally "number theory" indicates that this work 
arose from generalizations of theorems on ordinary integers. 

The main topics treated in this book are rooted in: 
(i) Dirichlet's theorem that there are infinitely many primes in every residue 
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class / modulo k, if the positive integers k and / are relatively prime; 
(ii) the prime number theorem that 

TT(X) ~ x/logx, x -> oo, 

where IT(X) denotes the number of primes less than x; 
(iii) the result of G. H. Hardy and S. Ramanujan that 

p(n) ~ exp{/71/2(7rV273 + o(l))}, n —» oo, 

where p(n) denotes the number of unrestricted partitions of the positive integer 
n; 

(iv) S. Ramanujan's series expansion 

o k=\ kl 

where a(«) denotes the sum of all positive divisors of n and 

cM = 2 e2™///c. 
(W)-i 

Results which sharpen (i)-(iii) considerably are now known. Also, statements 
analogous to (i)—(iv) hold in a more general context. We shall describe briefly 
the developments to which (i)—(iv) have given rise. 

Dirichlet proved (i) in 1837. The prime number theorem (ii) was first proved 
by J. Hadamard and C. de la Vallée Poussin, independently, in 1896. In 1899 
C. de la Vallée Poussin obtained a substantial improvement of (i) and (ii). He 
proved that there is a positive c such that for positive, relatively prime integers 
k and /, 

(1) TT(X;/C,/) = -g^f2 ï ^~ + 0(xQxp(-c^s/\ögx)\ x -> 00, 

where <p denotes the Euler function and *n(x\kj) the number of primes less 
than x lying in the residue class / modulo k. Since we have 

fx dy ^ x 
h \ogy ~ log*' x ' 

(1) obviously implies 

(2) ir(x;kj) ~ x/cp(k)\ogx, x —» 00, 

and, in particular, (ii), if we choose k = / = 1. It also follows from (1) that 
the primes are evenly distributed among the <p(k) residue classes which are 
relatively prime to k. 

In 1900, D. Hubert gave mathematical investigations a great stimulus, when 
he delivered his famous list of problems at the International Congress of 
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Mathematicians in Paris. In his eighth problem Hubert first recalls the 
Riemann hypothesis that all the nonreal zeros of the Riemann zeta function 
have real part \ and Goldbach's conjecture that every even integer greater 
than 3 is a sum of two primes. In the second part of his eighth problem he 
suggests the problem of carrying over the results on the distribution of 
ordinary prime numbers to results on the distribution of prime ideals in an 
algebraic number field. 

Although the Riemann hypothesis and Goldbach's conjecture are still 
unsettled, many results connected with Hubert's eighth problem have already 
been proved. 

Information on the zero-free region of the Riemann zeta function has been 
obtained by the use of delicate estimates for exponential sums. The strongest 
results so far proved rely on a method introduced by I. M. Vinogradov in 
1935. These results have led, on their part, to improved error terms in (1) 
which, however, are still far from 0(x^2logx) that is equivalent to the truth 
of the generalized Riemann hypothesis for Dirichlet's L-series. It has also 
turned out that for many arithmetical questions a better knowledge of the 
error term of (1) in its dependence on k and / would be useful. The most 
important results known in this direction are the Siegel-Walfisz theorem (1936) 
and the theorem of E. Bombieri and A. I. Vinogradov (1965). The former 
asserts that (1) holds uniformly with respect to k and / in the range 
0 < / < fc, (&,/)= 1,1 < & < log"*, where a is any positive number. The 
latter says that for any A > 0 there is a B > 0 such that for K = xx'2\og~Bx, 

2 max max 
(3) l<k*K2*y<x«ji-i 

^'k>l)-JiF)f2jÊru 

= 0(x log x\ x -> oo. 

While these two theorems can be used, e.g., to prove results somewhat weaker 
than Goldbach's conjecture, the latter sometimes even serves as a good 
substitute for the generalized Riemann hypothesis for all Dirichlet's L-series. 
To get an idea of its power, one should observe that even if the error term in 
(1) is 0(xx'2\ogx\ this does not lead to an essentially better estimate for the 
sum in (3). 

As far as the second part of Hilbert's eighth problem is concerned, the first 
contribution is due to E. Landau, who proved the analogue of (ii) for algebraic 
number fields in 1903. After E. Hecke's work on zeta functions (1917-1920), 
analogues of (1) were accessible by standard procedures in any algebraic 
number field. Moreover, the theorems obtained in this transition process did 
not only give new information on the distribution of prime ideals, but also 
contained new results on ordinary prime numbers. Such results were obtained, 
e.g., by Hecke (1920) using his zeta functions with Grössencharacters and by 
N. Cebotarev (1926) using Artin's L-functions. Hecke proved as a special case 
that for - \fy/2 < a < /? < l/\/2 there is a positive number Ca)8 such that 
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# {p prime|/? = u2 - 2v2 < x; u9v integral; a < v/u < /?} 

~ Capx/logx9 x -> oo, 

where # M denotes the cardinality of the set M. Cebotarev showed that for 
any conjugacy class C of the Galois group G of a finite Galois extension L 
over the rationals Q, 

# {p prime|^ < x;p unramified for L/Q and FL/Q(P) = C} 

~ ( # C/# G) • x/logx, x -» oo, 

where FL/Q(P) denotes the Frobenius conjugacy class determined by p. This 
theorem is an extension of (2), to which it reduces in the case of the cyclotomic 
field L = Q(e2«i/k). 

A generalization of (ii) different from that proposed by Hilbert originated 
with A. Beurling in 1937. While Hilbert suggested an algebro-arithmetical 
extension of (ii), Beurling was interested in the analytic nature of the prime 
number theorem. He started with a sequence P = (pj)jL\ of so-called 
generalized primes, i.e. with real numbers/^, satisfying 1 < px < p2 < • • • and 
having no finite accumulation point. Denoting by irP and Np the counting 
functions of the generalized primes and generalized numbers, namely 

mp(x) = # {Pj\Pj < x), 

NP(x)= # { ( a 1 , a 2 , . . . ) l r f l / ^ - - - < ^ 

aj nonnegative integral for y = 1,2,...}, 

he looked, in particular, for functions e(x) tending to 0 for x -» oo such that 
the assumption 

(4) Np(x) = Ax{\ + e(x)), x ~» oo, 

for some positive number A implies 

(5) flpM ~ x/log*-

If e(x) = 0(log""YA:) for x -> oo, he found that (5) holds for y greater than | , 
and that (5) can no longer be inferred from (4) in the case of y = \. His results 
contain not only (ii) but also Landau's prime ideal theorem proved in 1903. 
For if P is constituted by the norms of the prime ideals in an algebraic number 
field, (4) holds with an e even satisfying 

(6) e(x) = 0{x~9\ x -» oo, 

for some positive 9. Beurling obtained his results by refining earlier proofs of 
the prime number theorem in a subtle way. 

The notion of generalized primes being so extensive, it may happen, on the 
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other hand, that the asymptotic behaviour of mp is much easier to discuss than 
that of Np. This happens, e.g., in the case when 

P = (yj)JLv y>h 

where we have 

m nP(yx) = 2 1 ~ x9 x -> oo, 

and 

W ) - 2 PU). 
\<j<x 

In view of (iii) it is obvious that 

(8) NP(yx) ~ exp{x1/2(7rV573 + o(l))}, JC -* oo. 

Hardy and Ramanujan proved (iii) using a tauberian argument in 1917. A year 
later they improved it with the help of the circle method to 

p{n) = ( e c V 4 V 3 A„)(l + 0(1/A„)), «-»oo, 

where C - T T V Ï / Ï and A„ = (« - 1/24)'/2. Finally in 1937, H. 
Rademacher gave an exact expression for p(n), namely 

fa\ (\ l % ..1/2 * <^d( s i n h ( C A « A ) \ 

where Ak(n) denotes a finite sum of roots of unity. These results sharpen (8) 
considerably. A proof of Rademacher's formula is still rather involved. It is 
intimately connected with the theory of automorphic forms, whereas for (8) it 
is sufficient to know (7). A result similar to (8) can therefore be proved for any 
sequence P of generalized primes satisfying something like (7). 

An identity for an arithmetical function, which is much easier to obtain than 
(9), is given in (iv). Together with some other identities of a similar kind, it was 
proved by S. Ramanujan in 1918. Later it became apparent that such 
expressions are related to almost periodic functions. An extensive theory of 
Ramanujan expansions, i.e. expansions like (iv) in terms of the sums ck, has 
been developed in recent years. It is much in the spirit of the general theory 
of almost periodic functions. Ramanujan expansions of multiplicative func­
tions have attracted a special interest. If the identity 

ck(n) = 2 dii(k/d\ 
d\n 
d\k 

where p denotes the Moebius function, is taken as the definition of ck, a theory 
of Ramanujan expansion can also be developed for generalized numbers 
satisfying a condition similar to (4). 
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Since Beurling's work, many authors have investigated, under suitable 
conditions, various properties of generalized primes. Such an axiomatic point 
of view is also taken in the work under review. The author uses the concept of 
arithmetical semigroups which is equivalent to the notion of Beurling's 
generalized primes. Knopf mâcher starts with a long discussion of arithmetical 
semigroups and the functions defined thereon. According to Knopfmacher, he 
hopes to convince the reader of the usefulness of the axiomatic set up by 
giving many "concrete" examples fitting in the "abstract" approach he has 
chosen. These examples range from arithmetic and algebra to geometry and 
topology. For instance arithmetical semigroups are associated to the category 
of finite abelian groups or to the category of compact, simply connected, 
globally symmetric Riemannian manifolds. This can be done mainly because 
a "unique factorization theorem" holds in the corresponding categories. 
Knopfmacher then proves (5) under conditions (4) and (6) with the help of the 
tauberian theorem of Wiener and Ikehara. Similarly, an analogue of (2) is 
given in an axiomatic set up, however only by assuming a statement which 
already plays a crucial role in the proof of Dirichlet's theorem (i). For one of 
his axioms amounts in the classical case to the assumption that Dirichlet's L-
series formed with real nontrivial characters do not vanish at s = 1. Using the 
method of Hardy and Ramanujan developed in 1917, Knopfmacher derives 
an asymptotic result of type (8) for generalized primes satisfying something 
like (7). Under some further conditions he also proves analogues of (iii). 
Another chapter of his book is devoted to the theory of Ramanujan expan­
sions on arithmetical semigroups. Finally he ends with a rather extensive 
bibliography. As an addendum, A. G. Postnikov's book, Introduction to the 
analytic theory of numbers [Moscow, 1971 (Russian)], may be suggested. 
Among many other things, analogues of (i)-(iii) are treated within the setting 
of generalized primes in Postnikov's book. 

Since Knopfmacher's book assumes only a moderate mathematical back­
ground and the proofs are modelled along classical lines, the book may serve 
as an introduction to analytic number theory itself. However, the reader may 
find the author's practice of using the same notation for the coefficients of a 
Dirichlet series as well as the Dirichlet series itself rather unusual. This 
practice gives rise to statements such as " . . . the constant function . . . is 
called the zeta function" (p. 36). 

It is not the author's purpose to prove the best results known about the 
questions he treats. He has endeavoured rather to illustrate his theorems with 
a large number of examples. In particular, he has paid attention to the explicit 
calculation of the numerical constants in the asymptotic results for many 
special cases. 

The author indicates his view of the future development in the theory of 
arithmetical semigroups with a list of open problems. Moreover, since 
"concrete" analytic number theory is a living part of mathematics, further 
possibilities of proving its theorems in an axiomatic setting cannot be 
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excluded. When such developments are carried out, however, it may be 
worthwhile to keep in mind the following, somewhat free, quotation from H. 
Weyl (Gesammelte Abhandlungen, Vol. I, p. 393): Methods of this general 
nature should achieve that which no special approach is capable of doing, namely 
reveal the common features o f a large complex of phenomena. The reviewer has 
missed an adequate stressing of this view of general methods in Knopfmach-
er's book. 

A. GOOD 


