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Time series analysis is a part of statistics, i.e. the study of the reduction of 
data. It has individual features that separate it from the central part of 
statistics, on which it has had relatively little influence. The subject has some 
attractions for it is mathematically elaborate yet realistic. The complexity of 
the subject, together with its strong contacts with other parts of science, 
which make it appear a "foreign land" to a student with a purely mathemati­
cal background and too mathematically difficult for a student not mathe­
matically able, also make coherent presentations especially important and 
there have been many books published on the subject in the last ten years. (I 
can count ten, leaving aside books emphasising applications in special parts 
of science or dealing with the underlying probability theory.) In its modern 
form time series analysis dates from the early fifties, and the advent of high 
speed computing, and the first reasonably connected account in this sense is 
probably [1], which is still worth studying. One is led to ask what such a 
treatise, written today, might reasonably contain. (What any particular work 
will contain must depend also on the audience to whom it is addressed.) In 
the first place there will have to be an account of the underlying probability 
theory which emphasises the theory of stationary processes with finite mean 
square and thus emphasises the place of Fourier methods in the theory. Of 
course some account might be given of spatial processes that are homo­
geneous (i.e. have their probability structure invariant under a group which 
acts in the space). However it is doubtful how much generality is valuable 
here for the range of cases of importance is limited and, moreover, from a 
statistical point of view the process has to be sampled and for most spatial 
phenomena the sampling is so irregular (e.g. the location of weather stations) 
that symmetry present in the underlying process is lost. Nevertheless an 
account sufficient for an understanding of concepts such as wave number 
spectrum, dispersion, isotropy etc. could be aimed at together with some 
indication of the unifying mathematical ideas (relating to the representation 
theory of the group). In addition to such a treatment for processes whose 
state varies continuously, there might also be some account of the theory of 
point processes. Two other parts of mathematics relate to the statistics. The 
first of these is ergodic theory. The importance of this can be perceived from 
the last chapter of [2], for example. The second is (linear) prediction theory. 
The classical part of this theory is the linear prediction theory for stationary 
Gaussian processes and though of no real importance in any generality, from 
the point of view of actually doing prediction, nevertheless it is intimately 
related to delicate aspects of the structure of stationary Gaussian processes 
and also to ergodic theory for example (see [2]). Apart from this classical part 
(which emphasises Fourier methods, Hp spaces etc.) there is a somewhat 
mathematically simpler part that commences from the model of a vector, 
Gaussian, Markov process (but not necessarily stationary) observed subject to 
(Gaussian white noise) error. The, so-called, Kalman filter which 
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accomplishes prediction for these models is important not only for prediction 
itself but also because it relates closely to important statistical questions. 

The theory of time series can be presented coherently but such a 
presentation will require not only the mathematical groundwork already 
described but also a preliminary treatment of the limit theorems of proba­
bility in relation to stationary sequences (at least). The central limit theorem 
will be essential and in a form that at least allows results to be established for 
functions of the Fourier coefficients. These are defined, for vectors of data 
x(n\ n = 1, . . . , N, by 

N 

^(co.) = N-l/2^x(n)einuJ, <oy. = ITTJ/N', N' > N. 
l 

These quantities, whose cheap computation when N' is highly composite is of 
great importance, form the basis of a great many statistical calculations. The 
development of the limit theorems, in some of their most pleasing forms, 
depends on the theory of square integrable martingales, some part of the 
theory of which may also, therefore, be needed. This martingale theory will 
also link with ergodic theory (mixing etc.) and with the theory of the 
construction of likelihoods, for example for point processes and continuous 
time linear systems (see below). 

The first part of the statistical methods that can be treated in a coherent 
manner is that using Fourier methods and based, ultimately, on the w(coj). 
There is a tendency to equate these methods with estimation of spectra and 
cross spectra (which describe the decomposition of a vector process into 
orthogonal components via the corresponding decomposition of variances 
and covariances). This is important and techniques are still developing today 
but often of greater importance is the use of these quantities in more 
elaborate statistical calculations. An example is the general field of signal 
velocity measurement and the measurement of the dispersive properties of the 
media through which the wave is propagated. Here the basic measurements of 
spectra (especially coherence and phase) are combined in elaborate ways to 
make the final measurements. An underlying idea which gives unity over a 
much wider range is certainly the following (which I ascribe to [3]). The 
quantities w(coj) are, for Nf = N9 "nearly" independent Gaussian random 
vectors (for x(n) a vector measurement) as N-* oo in the sense that, under 
suitable conditions, for a fixed <o, and m of the coy. nearest to <o, this is so. If 
this independence and normality are fictitiously assumed for all co, then 
— 2 N ~l by the logarithm of the likelihood becomes 

logdet(E) + N-l2K{n<*j)f(<*j)~1}-
j 

Here ƒ (co) is the spectral density matrix and 2 is the covariance matrix of the 
linear prediction errors. (A further approximation has been introduced that 
uses the expression of det 2 as the geometric mean of det{277/(co)}.) Since the 
physical quantities important in the properties of wave propagation, for 
example, influence the spectra rather directly, this likelihood, via a good deal 
of "sleight of hand", leads to many of the most useful final calculations. Of 
course all of this needs justification, which itself will be dependent on some of 
the more elaborate developments of the limit theorems sections. (The theory 
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can also be misleading as when 

x(n) = f)x(n - 1) + e(n) + ye(n)x(n - 1), ^ {*•(/?)} = 0, 

&{e(m)e(n)} = SmiI, p
2 + y2 < 1, 

and the e (A) are Gaussian, then all the above properties and consequent 
results hold for the w(co.) computed from the x(n) but, of course, the true 
likelihood is not that being used, even in an approximate sense.) 

In all of the statistical sections some details concerning algorithm 
construction will be needed and in some cases these may be quite extensive 
for almost always an optimisation of some nonlinear function is called for. 

A second large development giving coherence to the subject is that of linear 
systems. One might reasonably define such a (stationary) system as one 
generating a random process for which the best linear predictor is the best 
predictor (in the least squares sense) so that the prediction errors (in the 
discrete time case) are martingale differences. The linear systems we have in 
mind here are further restricted to have rational transfer functions (from 
inputs to outputs). The subject links with the Fourier methods through these 
transfer functions. The theory of these systems involves an algebraic part 
(that describes the equivalence classes of systems i.e. classes corresponding to 
the same transfer function) resting on the properties of matrices of 
polynomials, a probabilistic part (which is quite elaborate in the continuous 
time case) and a topological part which arises in connection with the 
estimation of the equivalence class and in connection with which the mani­
fold structure of the spaces of equivalence classes is important. The theory 
also links closely with parts of control theory. These systems also lend 
themselves to generalisations particularly in the direction of nonstationarity. 
They also lead to special nonlinear models which may prove more important 
than developments along the lines of the description of the general nonlinear 
filter with Gaussian input. This is because of the large numbers of parameters 
inevitably associated with the description of such filters. (Of course the 
elaborate theory associated with these concepts might nevertheless be inclu­
ded.) 

Another range of problems is that associated with the statistical analysis of 
point processes (e.g. failures in computing apparatus). Here Fourier methods 
are of minor importance but martingale theory is again central. There is also 
a large development associated with extreme values of a process (e.g. in 
connection with the strength and stability of structures) much of which is not 
very fully developed from a statistical viewpoint. Of course the subject also 
shades off into control theory and the statistical theory of communication but 
these are rather separated from statistical time series analysis. 

It is probable that no one book could adequately cover all of this material, 
even assuming a sophisticated mathematical audience. The book under 
review is not aimed at such an audience but rather at a readership possessed 
only of classical real variable knowledge, elementary linear algebra and some 
basic statistical technique. (Graduate students in economics were important 
in a course from which the book developed.) About one-sixth of the 450 pp. 



992 BOOK REVIEWS 

of text is devoted to mathematics and probability theory (mainly Fourier 
concepts and limit theorems of probability). Some 40% is concerned with the 
simplest case of linear systems (namely scalar autoregressive-moving average 
processes), and a quarter with the definition of spectra and their estimation. 
The remainder is devoted to regression and the estimation of serial covarian-
ces. The book is fairly precisely written with results stated as theorems and 
there is a considerable amount of exemplification. The book is not without 
interest for a professional researcher in the subject. Sometimes the author 
shows a lack of depth of knowledge so that an inferior result is established at 
no saving in simplicity of proof. Thus he proves that, if the autocovariances 
converge to zero for a second order stationary process, then the sample mean 
converges to the true mean in mean square. An equally simple proof estab­
lishes the more perspicuous result that such convergence takes place if and 
only if the spectral function has no jump at the origin. This condition is then 
obviously also necessary and sufficient for almost sure convergence in the 
strictly stationary (finite mean square) case using the ergodic theorem, which 
is not mentioned in the book. The choice of material is sometimes, also, 
strange. For example a fairly lengthy discussion is given of the pointwise 
convergence of a Fourier series. The author may feel that this gives intuitive 
feeling but it would seem preferable merely to discuss the topic. One can also 
wonder whether a student who is interested in this subject at a theoretical 
level is likely to possess such a meagre mathematical background as that 
required of him. 

Another criticism is that the book has a slightly "old fashioned" air about 
it, as if it were being published in 1970 not 1976. This relates particularly to 
the failure to introduce the general linear systems concepts. The Fourier 
techniques are used only to estimate spectra and cross spectra (and recent 
developments here are not mentioned) nor are they well linked with other 
sections. 

Nevertheless the book is fairly successful and may obtain a considerable 
readership basically because it is carefully and correctly written by someone 
who understands reasonably well what he chooses to write about. The choice 
of topics is at least wide enough to give a good introduction to the subject 
and in relation to some, quite elaborate but useful, statistical techniques the 
book is sufficiently complete (including details of algorithm construction) to 
provide the information needed to effect the analysis of data. 

REFERENCES 

1. U. Grenander and M. Rosenblatt, Statistical analysis of stationary time series, Wiley, New 
York, 1957. MR 18 #959. 

2. Yu. A. Rozanov, Stationary random processes, Holden-Day, San Francisco, 1963. MR 35 
#4985. 

3. Peter Whittle, Hypothesis testing in time series analysis, Thesis, Uppsala Univ., 1951. MR 12 
#726. 

E. J. HANNAN 


