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Since further books on fuzzy set theory are unavoidable, we may at least ask 
them to show a greater sensitivity to the relevant diverse sources of literature, 
and provide a comparative analysis which shows when and where the 
language of fuzzy set theory helps, and where it only adds fuzziness to the 
theory without in any way smoothing the original problem. 
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MICHAEL A. ARBIB 

Etude géométrique des espaces vectoriels, une introduction, by Jacques Bair and 
René Fourneau, Lecture Notes in Mathematics, no. 489, Springer-Verlag, 
Berlin, Heidelberg, New York, 1975, vii + 184 pp., $8.20. 

In the axiomatic study of linear topological spaces over the real field, which 
flourished forty to twenty years ago, it soon became clear that the absolutely 
minimal requirement for a topology in a linear space L is that each line in L 
carry a copy of much of the structure of R. This finds expression in two 
aspects of segments, first, that each open segment in R is a neighborhood of 
all its points-an aspect that can usefully be generalized to linear spaces over 
all topological fields, and, second, that the two endpoints of each segment are 
accessible from the interior of the segment-an aspect which generalizes to 
linear spaces over ordered fields. These two attitudes lead to analogues of 
interior of a set in L and of derived set of a set in L. 

The first attitude leads to a definition: x is called a core point of a subset A 
of L if for each line / through x the subset IDA contains an open interval (in 
/) which contains x. Two topologies in L are suggested: For T, the neighbor­
hoods of x are all the subsets of L which have x as a core point; for Tn, the 
neighborhoods of x axe all the convex subsets of L which have x a s a core 
point. T is not badly related to the linear operations in L; translation by an 



952 BOOK REVIEWS 

element of L or dilation by a real number is a continuous function for T, but 
addition in L is not a continuous function of both variables, even if L is only 
two-dimensional. 
(The picture shows a set, two tangent 
circular discs and an interval of their 
common tangent, which has zero as a core 
point, which cannot contain any U + F f or 
which U and V have 0 as a core point.) 
The topology Tn, on the other hand, makes L into a locally convex linear 
topological space, and Tn is the finest locally convex topology which L can 
carry. It is reported that thirty years ago in lectures at the University of 
Chicago, M. H. Stone called this the natural topology of L; since then it has 
frequently been called the convex core topology, a terminology probably due 
to MacShane or his student Klee in the late 1940's. 

Starting from the end-point attitude leads to an analog of derived set, 
originally used by Nikodym and his students for convex subsets of L. Say that 
x is linearly accessible from A if there is a point a such that the half-open 
segment [a,x[ is contained in A. The book at hand uses aA for the set of all 
points linearly accessible from A; the early studies used lin A, defined as 
A U aA, the natural closure associated with a{ ). When A is a convex set with 
at least two points, aA 2 A. Klee showed that L is finite-dimensional if and 
only if for each convex subset A of L, lin(lin^l) = lin 4 . 

In early 1949 in a referee's report on one of Klee's early notes I sent him 
what I called "the standard example" of a convex set K for which each linear 
function bounded below on K is identically zero: L has a countably-infinite 
Hamel basis (et) and K is the set of all x whose last coordinate, when 
represented in terms of the ei9 is positive. (I do not now remember why I 
thought then that everybody knew that example; I came to it myself while 
thinking about ordered linear spaces after years of drudgery with lexicograph­
ic ordering in products of general ordered systems.) Klee pounced on the 
example, generalized it, called a convex set K ubiquitous in L if linüT = L, 
and studied ubiquitous convex sets very thoroughly. (In the example above 
K U -K = L, K H -K = {0}, and both K and -K are ubiquitous convex 
cones in L, both quite without core points.) 

In that same period (1948-1953) Nikodym was working with the operation 
lin and with two other line-determined operations; Nikodym called a convex 
set K in L linear-bounded (linear-closed) if for each line / in L the intersection 
A n / is contained in a segment [x,y] of I (A D I is a closed subset of /)• He 
showed that if lina is defined for all ordinals a by transfinite repetition of lin, 
then for each infinite-dimensional L and each a < Ö, the first uncountable 
ordinal, there is a convex A in L such that lina+l4 = \\naA D lin^4 D liny,4 
for all y < /? < a, while if the dimension of L is uncountable, there is even a 
convex set A with lin'M a strictly increasing function of a < &. However, for 
each convex set A in each linear space L lmQ+lA = InAl. Nikodym also 
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showed by example that the vector sum of two linear-closed or linear-
bounded sets need not be linear-closed or linear-bounded. Also, Nikodym 
and Berg showed how to split every convex set into disjoint convex subsets 
(faces) each of which, relative to its smallest containing flat set, contains only 
core points. Later Klee picked this up and defined an order in K: For x and y 
in K say that x < y if x = y or there is a z in K such that y is in the open 
segment ]x, z[. Then Nikodym's faces are the equivalence classes determined 
by the equivalence relation x < y and y < x. 

Those aficionados of general topology 
who care to recall the usual connections 
between a monotone closure and an associated 
neighborhood system (as described in my 
paper Convergence, closure, and neighborhoods, 
Duke Math. J. 11 (1944), 181-199) 
can see that the set-operation a( ) is 
determined by the neighborhood system %a for which U is a neighborhood of 
x if and only if for each y ¥* x there is a point u in U Ci]x,y[. For lin the 
neighborhoods of x are subject to the additional condition that x E U. a( ) 
and lin are not idempotent so they are not definable in the usual way from any 
family of open sets. a( ) and lin are also definable by convergence, but, since 
they are not additive, directed systems are not adequate for them; some very-
wide-spreading oriented systems must be used. 

The book at hand emphasizes generalizations of these themes and applies 
them to not-necessarily-convex sets, k is the smallest flat subset which con­
tains A, and k is the relative core of A; that is, the only lines through x which 
are considered are those in k. Of course, k and aA are empty for most subsets 
of L, so certain special classes of sets, between starlike and convex, get extra 
attention. 

Part I discusses finite iteration of these operations. Examples are given of 
(a) an A in R for which lina A is strictly increasing for each a < <o, the first 
infinite ordinal, and (b) a subset 2?w of R03 which has lina A strictly increasing 
for all a < to. 

Part II studies transfinite iteration of these operations. It is shown that for 
each subset A of L iteration of either '( ) or a{ ) becomes constant eventually. 
It seems to me that the use of a larger limit ordinal /? than <o in a construction 
similar to (b) above would give a subset Bp of R& with lina B» increasing for 
all a < /?. This would show that convexity was a necessary part of Nikodym's 
result that \mQ+l A = lin® ,4. 

Part III is devoted to applications, almost exclusively to convex problems: 
(i) Decompositions of L into finitely many convex subsets, (ii) Ordered linear 
spaces over R, with special emphasis on totally ordered linear spaces and their 
appearance in separation and extension problems, (iii) A few words on 
optimization problems with a proof that any maximizing points of a noncon-
stant convex function on a convex set A must lie in mA, the margin of A, 
defined as aA VA. (iv) A return to 'faces' of convex sets to present a proof of 
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H. S. Bear that the Gleason parts of the spectrum of a function algebra are 
determined by mapping into an appropriate convex set K and showing that 
the Gleason parts are just the inverse images of the sets of the Nikodym 
decomposition of K. 

Part IV looks at the effects of choosing an ordered field other than R. Part 
V returns to linear spaces over R to compare these algebraic-geometric 
operations in L with more usual topologies for L. The book ends with some 
account of the natural topology in L. 

The authors have surveyed and digested the literature of this topic quite 
thoroughly. This set of lecture notes gives interested mathematicians a very 
full account of the kind of topological structure forced on a linear space by its 
scalar field. 

M. M. DAY 
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Model theoretic algebra: Selected topics, by Greg Cherlin, Lecture Notes in 
Mathematics, vol. 521, Springer-Verlag, Berlin and New York, 1976, iv + 
232 pp., $9.50. 

In an address to the International Congress of Mathematicians at Cambridge, 
Massachusetts in 1950, Abraham Robinson pointed out that "contemporary 
symbolic logic can produce useful tools-though by no means omnipotent 
ones-for the development of actual mathematics, more particularly for the 
development of algebra and, it would appear, of algebraic geometry." A 
similar observation was made by Alfred Tarski in an address to the same 
Congress in which he defined some of the basic notions of that branch of logic 
which is now called model theory-that is the study of the properties of 
mathematical structures expressible in formal mathematical languages. 

That the expectations of these two giants of model theory were more than 
fully realized in the succeeding decades is indicated by the scope of the volume 
under review, which is an exposition of selected results in the model theory of 
such diverse algebraic systems as groups, rings, modules, fields, division rings, 
ordered fields and valued fields. Not all of the results presented are applica­
tions of model theory to algebra in the strict sense that they are theorems 
expressed in conventional algebraic terms and proved by model-theoretic 
methods; but many of the others are applications in the broader sense that 
they show how-in the words of Robinson in a later paper [9]-"certain basic 
facts and notions of Algebra, for example the notion of an algebraically closed 
field, can be placed and generalized within the framework of Model Theory." 

The book under review, which consists of lecture notes of a course given by 
the author at M.I.T. in 1974 and again at the University of Heidelberg in 1975, 
constitutes an expeditious and extensive introduction to the burgeoning field 
of "model theoretic algebra." The author is a knowledgeable and informative 
guide, who provides a broad view of the subject, never losing sight of the forest 


