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COEFFICIENTS OF UNIVALENT FUNCTIONS 

BY PETER L. DUREN 

The interplay of geometry and analysis is perhaps the most fascinating 
aspect of complex function theory. The theory of univalent functions is 
concerned primarily with such relations between analytic structure and 
geometric behavior. 

A function is said to be univalent (or schlichi) if it never takes the same value 
twice: f(z{) # f(z2) if zx #= z2. The present survey will focus upon the class 
S of functions 

f(z) = z + a2z
2 + a3z

3 + • • • 

analytic and univalent in the unit disk \z\ < 1. This is the class of all univalent 
functions normalized by the conditions /(O) = 0 and /'(O) = 1. We shall 
concentrate on coefficient problems for the class S and for related classes, with 
emphasis on recent results and open problems. Most of the methods we shall 
describe have wide scope and are not restricted to coefficient problems. 

The theory of univalent functions is an old but very active field. The last ten 
or fifteen years have witnessed a number of major advances. In fact, progress 
has been so rapid that Hayman's 1965 survey [66] of coefficient problems is 
already rather out of date. 

In most general form, the coefficient problem is to determine the region of 
C2"1 occupied by the points (a2,...,an) for all ƒ E 5. The deduction of such 
precise analytic information from the geometric hypothesis of univalence is 
exceedingly difficult. We shall confine attention to the more special problem 
of estimating \an\, the modulus of the nth coefficient. Even this problem has 
never been solved completely. 

1. The Bieberbach conjecture. The leading example (aside from the identity) 
of a function of class S is the Koebe function 

k(z) = z(l - z)"2 = z + 2z2 + 3z3 + • • •, 

which maps the unit disk onto the full plane slit along the negative real axis 
from -1/4 to oo. The Koebe function and its rotations k (z) = e~l(p k(el<p z) 
have long been known (see [55], [63], [120], [38]) to maximize and minimize 
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various functional in S, such as | ƒ (z0)| and | ƒ'(^o)l a t a ^xec^ P°int zo- *n 1916, 
Bieberbach [12] conjectured that they also maximize \an\9 the modulus of the 
nth coefficient. 

BIEBERBACH CONJECTURE. For each function f G S, \an\ < n for n -
2, 3, . . . . Strict inequality holds for all n unless f is the Koebe function or one of 
its rotations. 

The Bieberbach conjecture has stood for sixty years and has inspired the 
development of important new methods in complex analysis. In all likelihood, 
it has already contributed more to mathematics as a challenging problem than 
it will ever contribute as a theorem. It has now been verified up to n = 6, each 
coefficient being treated by a different method. A review of these proofs will 
give us an opportunity to describe some of the main techniques of the field. 

Bieberbach [11], [12] proved \a2\ < 2 as a corollary to an elementary result 
known as the area theorem. Closely related to S is the class 2 of functions 

g(z) = 2 + ft0 + V " 1 + b2z~2 + *# * 

analytic and univalent in \z\ > 1 except for a simple pole at oo with residue 1. 

AREA THEOREM. For each g G 2, 2£Li n\bn\ < 1. 

PROOF. Since g is univalent, it maps each circle \z\ = r > 1 onto a simple 
closed curve Cr whose interior has positive area expressed (by Green's 
theorem) as a contour integral: 

Now let r -» 1 to obtain the result. 
In particular, \bt\ < 1. The inequality \a2\ < 2 follows by considering 

g(z) = {/0A2)}~1/2> which belongs to 2. The area theorem is due to 
Gronwall [60]. 

In 1923, Loewner [92] proved |a3| < 3, using what is essentially a paramet­
ric representation of the slit mappings. These are the functions which map the 
disk onto the full plane slit along some Jordan arc terminating at oo. The slit 
mappings are dense in S in the topology of uniform convergence on compact 
subsets of the disk. Loewner proved they can be generated (along with certain 
other univalent functions) by a differential equation of prescribed form. This 
leads to an explicit integral representation of a3, from which the estimate 
follows. 

The problem of the fourth coefficient remained open until 1955, when 
Garabedian and Schiffer [46] used a variational method to show that \a4 \ < 4. 
Their proof was extremely complicated. Schiffer [134], [135], [136] had 
developed a calculus of variations for the class S and had used it to show that 
each function in S which maximizes \an \ must map the disk onto the plane slit 
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along a system of analytic arcs satisfying a certain differential equation, the 
trajectories of a certain quadratic differential. The main difficulty in applying 
the variational method is the global analysis of the trajectory structure. The 
general coefficient theorem as developed by Jenkins [75], [76], [77], [78] 
complements the variational method in a remarkable way and automatically 
gives an inequality involving the coefficients of the extremal function, but from 
this it is often difficult to deduce the desired inequality. 

Five years after the Garabedian-Schiffer proof, Charzynski and Schiffer [23] 
astonished everyone with the discovery of an elementary (and simple!) proof 
of \a4\ < 4. It was based on the Grunsky inequalities [61], which can be derived 
by a slight generalization of the method used to prove the area theorem. One 
statement is as follows. For g E 2, let 

\ogg{z)~_êP = i i cnkz-»rk, \z\>i,I?I>i. 
The coefficients cnk are polynomials in the coefficients bn of g. 

GRUNSKY INEQUALITIES. For each integer N and for all complex numbers 

N N N 1 l 

n=\ n 

For a technical reason, the Grunsky inequalities seem to apply to the 
Bieberbach conjecture more readily for even indices than for odd. In 1968, 
Pederson [110] and Ozawa [108], [109] used them to prove |a6| < 6. Only 
several years later did Pederson and Schiffer [112] succeed in proving \a5 | < 5. 
They applied the Garabedian-Schiffer inequalities, a generalization of the 
Grunsky inequalities which Garabedian and Schiffer [48] had derived by a 
variational method. These inequalities involve auxiliary parameters which can 
be chosen to optimize the estimates. 

The Bieberbach conjecture has been established for various subclasses of S. 
For example, it is true for starlike functions (that is, for functions whose range 
is starlike with respect to the origin) [91], [106], for "close-to-convex" functions 
[80], [122], for functions with real coefficients [28], [127], [145], and even for 
functions whose first [n/2] coefficients are real [58], [107], [139]. With the aid 
of a computer, D. Horowitz [69] recently verified it for polynomials in S of 
degree up to 27. 

For the full class S, Littlewood [88] showed that \an | < en for all n, where 
e is the base of natural logarithms. His proof involves the crude estimation of 
the Cauchy integral formula for an: 

\an\ <rnMx(r9f)9 0<r< 1, 

where 

MP^f) = ( ^ f0
2W \f(rei9)\pd9}l/P, 0 < p 

\/P 

< o o . 
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Littlewood used an elegant geometric argument to prove Mx{r,f) < 
r(l — r)"1, whereupon the choice r = 1 — \/n leads to the conclusion. The 

crude estimate \an\ < r~nMx(r,f) can lead to nothing better than \an\ < 
en/2, since the Koebe function has integral mean Mx(r, k) = r(l — r2)"1. 
Bazilevic [9] improved Littlewood's estimate for Mx{r,f) to show 

\an\ < en/2 + 1.51, n = 2, 3, 

The sharp bound for Mx{rJ) remained undetermined until a few years ago, 
when Baernstein [7] was able to prove Mp{rJ) < Mp{r,k\ 0 < p < oo, for 
all ƒ E S. In particular, this completes the proof that \an\ < en/2. 

The first penetration of the e/2-barrier came in 1965, when Milin [98], [102] 
proved \an\ < 1.243 n. More recently, FitzGerald [44] showed 

\an\<{l/6)X,1n< 1.081 n. 

Later we shall describe the methods of Milin and FitzGerald, which are 
somewhat similar. Horowitz [68] has refined FitzGerald's method to obtain the 
best estimate now known: 

\an\ < (209/140)1/6>* < 1.0691 n. 

In connection with Baernstein's theorem, it should be remarked that the 
corresponding problem for derivatives is still unsolved. The inequality 
Mp{rj') < Mp{r,k') is false for/? < 1/3, since k' G Hp for all/? < 1/3 and 
it is known [93], [38] that there exist univalent functions ƒ with ƒ ' $ Hp for all 
/? > 0. It follows easily from Baernstein's theorem that Mp(r,f') = 
O ((I - r)l/p~3) for ƒ G S and/? > 1/2. (For/? > 1 this is a consequence of 
Littlewood's estimate of Mx(r, ƒ).) Feng and MacGregor [43] recently exten­
ded this (best possible) asymptotic result to p > 2/5. For close-to-convex 
functions/, Cluni and I [31], [26] proved Mx(r,f') < Mx(r, k'\ and MacGre­
gor [95] generalized this to all p > 1. It is a reasonable conjecture that this 
inequality Mp(r,f) < Mp(r, k') extends to the full class S for all/? > 1/3. 

2. Odd univalent functions. Another problem closely related to the Bieber-
bach conjecture is to find the sharp estimates for the coefficients of odd 
univalent functions. The most general odd function of class S has the form 

n{z) = [f(z2)f2 = z + c3z3 + c5z5 + . .« , f GS. 

Littlewood and Paley [90] showed in 1932 that |c„| < 4̂ for all n, where A is 
an absolute constant (their method gives A < 14), and they added the 
footnote, "No doubt the true bound is given by A = 1." 

This last remark has become known as the Littlewood-Paley conjecture. It 
easily implies the Bieberbach conjecture, as the following argument shows. 
Compare coefficients of z2n in the equation f(z2) = [h(z)f to derive the 
relation 

an = Cl C2n-l + C3 C2n-3 + ' ' " + c2n-\ CV ^ = 1. 
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Since there are n terms on the right-hand side, the uniform bound \ck\ < 1 
would imply \an\ < n. In fact, an application of the Cauchy-Schwarz inequal­
ity shows that the following conjecture, proposed by Robertson [123] in 1936, 
also implies the Bieberbach conjecture. 

ROBERTSON CONJECTURE. For each odd function h(z) = z + c3z
3 + c5z

5 

+ • • • of class 5, 

1 + \c3\ + • • • + \c2n_iI < n, n = 2, 3, 

For n = 2 this inequality is equivalent to \a2\ < 2. Robertson [123] used 
Loewner's method to prove it for n = 3. In 1970, Friedland [45] applied the 
Grunsky inequalities to extend it to « = 4, but for larger n it remains open. It 
seems to be open even for functions with real coefficients. 

The Littlewood-Paley conjecture is true for starlike functions [121], [50] but 
false in general. As early as 1933, Fekete and Szegö [42] applied the Loewner 
method to obtain the sharp inequality 

\cs\ < l/2 + (T2/3 = 1.013.... 

In fact, they obtained the sharp bound 

\a3 - aa\\ < 1 + 2^"2a/ (1"a), 0 < a < 1, 

which gives the result because c5 = (a3 — a\/A)/2. 
Schaeffer and Spencer [131] later produced an elementary construction, for 

each odd integer n > 5, of an odd function of class S with real coefficients 
and with \cn\ > 1. They also found, using a variational method, that the 
Fekete-Szegö bound for |c5| is attained for a function with real coefficients. 
Quite recently, Leeman [85] has shown that for odd functions in S with real 
coefficients the sharp bound for \c7\ is 1090/1083. The appearance of a rational 
bound was totally unexpected. The upper and lower bounds for c7 are 
symmetric, since the passage from h(z) to —ih(iz) preserves real coefficients 
and reverses the sign of cn for each n = 3 (mod 4). 

The best known estimate of the Littlewood-Paley constant is due to Milin 
[99], [102]: A < 1.17. This represents an improvement on earlier results of V. 
I. Levin [87] and Kung Sun [83]. 

3. Asymptotic results. For each given function / E S , the Bieberbach 
conjecture is eventually true: Hayman [62] showed in 1955 that \an\/n always 
tends to a limit less than one unless ƒ is a rotation of the Koebe function. 
Actually, Hayman's full result involves multivalent functions and is much 
more general, but we state it in specialized form. 

HAYMAN REGULARITY THEOREM. For each fixed f e S, 

lim \a„\/n = a < 1, 
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with equality if and only if f is a rotation of the Koebe function. 

This theorem does not prove the Bieberbach conjecture for large n because 
a depends on ƒ and the convergence is not uniform, even if a is prescribed. In 
fact, Shirokov [144] recently showed that \an\/n may tend to any given a 
arbitrarily slowly. 

Hayman's proof proceeds in two main steps. The first step is to show that 
for each/ E S, 

lim(l-r)2MÛ O(r,/) = a < 1, 

where M^rJ) denotes the maximum of \f(z)\ on the circle \z\ = r. An easy 
compactness argument then proves that ƒ has a direction elB of maximal 
growth: 

l im( l - r ) 2 | / ( re ' -*) |=« . 

The second and more difficult step is to deduce that \an\/n tends to this same 
number a. For a > 0, Milin [101], [102] has found an alternate approach to 
this latter step which suggests viewing it as a Tauberian theorem. Recently, I 
applied Tauberian remainder theorems to obtain quantitative versions of 
Hayman's theorem [34], [35]. 

Hayman's theorem appears to be persuasive evidence in favor of the 
Bieberbach conjecture until it is compared with Hayman's parallel result for 
odd functions 

h(z) - [f(z2)f2 - z + c3z3 + c5z
5 + • • •, ƒ E S. 

If ƒ has Hayman number a, then \c2n+x \-* y/â < 1, despite the failure of the 
Littlewood-Paley conjecture. 

The Bieberbach conjecture is known to be true for functions with sufficient­
ly small second coefficient. Aharonov [1], [3] and Il'ina [73] adapted Milin's 
method to show that if \a2\ < 1.05, then \an\ < n for all n. More recently, 
Ehrig [41] applied an inequality of FitzGerald to improve the constant to 1.15, 
and Bishouty [14] used a closely related technique to extend it to 1.55. (In 
unpublished work, Bishouty has since pushed it up to 1.61.) Ehrig [40], [41] 
also showed that if ƒ E S and \a2\ < C < 1.709, then \an\ < n for all n > N, 
where Af depends only on C and not (as in Hayman's theorem) on ƒ. 

The Hayman number a can be estimated in terms of the bound C on \a2\. 
As a corollary to Jenkins' [74] sharp estimate of \f(z)\ for functions ƒ E S with 
fixed a2, Hayman [62] gave the sharp bound 

a < 4 \ V ~ 4 \ X - {2 - (2 - C)1 /2}-1 . 

Hayman [64] also proved that Ajn tends to a limit, where An is the 
maximum of \an\ for all ƒ E S. It is still an open question whether this limit is 
equal to 1. 
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ASYMPTOTIC BIEBERBACH CONJECTURE. limn_^O0An/n » 1, where An * 
™ax/es|a„|. 

Yet another unsettled conjecture was proposed by Littlewood [88] in 1925. 

LITTLEWOOD CONJECTURE. Iff G S andf(z) =£ w for some complex number 
w, then \an | < 4|w|«, n = 2, 3, . . . . 

By a classical theorem of Koebe, any omitted value w must have modulus 
\w\ > 1/4. Thus the Littlewood conjecture is an immediate consequence of the 
Bieberbach conjecture. Nehari [103] showed that even the asymptotic Bieber­
bach conjecture implies the Littlewood conjecture. 

4. Exponentiation of the Grunsky inequalities. Roughly speaking, the Gruns-
ky inequalities give detailed information about the coefficients of the logarithm 
of a univalent function. Milin's leading idea is to transfer this to information 
about the coefficients of the function itself by a process of exponentiation, 
applying some inequalities due to Lebedev and himself. These inequalities 
concern general power series and have nothing to do per se with univalent 
functions. Let (p(z) = 2*°=i akzk ^ e a n afbitrary power series with a positive 
radius of convergence, normalized by <p(0) = 0. Let 

&—o 

denote the exponentiated power series. 

LEBEDEV-MILIN INEQUALITIES. 

(1) 2 \pk\
2 < exp{ 2 k\ak\

2\ 
k=Q vfc=l J 

(2) ^ r 2o l^|2 < e x p l ^ 2 l 2, (*kl2 - 1A)} 

(3) l/U^explJ^Kf-lA)}. 

All three inequalities are sharp. For proofs, see [102], [2], [120], [38]. 
The logarithmic coefficients of a function ƒ G S are the numbers yn denned 

by 

log^M = 2 2 ynz
n, \z\ < 1. 

If ƒ is the Koebe function, then yn = 1/n. A remarkable result of Bazilevic [10], 
[102] asserts that 

00 

2 n Yn „ 

2 1 1 
< 2 l0K 
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for functions ƒ G S with positive Hayman number a, rotated so that 1 is the 
direction of maximal growth. This inequality says that if a is near 1, then ƒ is 
"near" the Koebe function. For starlike functions/, it is not hard to show that 
|yj < \/n for all n. This is false in general, even in order of magnitude [116], 
[118], [59]. Nevertheless, Milin [99], [102] used the Grunsky inequalities to 
obtain the following result. 

MILIN LEMMA. For every function f G S, 

where 8 < 0.312. 

COROLLARY. The coefficients of odd univalent functions satisfy \cn | < e ' 
< 1.17, n = 3 , 5 , . . . . 

The corollary is derived from Milin's lemma by applying the third Lebedev-
Milin inequality. Since the Littlewood-Paley conjecture is false, the constant 8 
cannot be reduced to zero. Milin has offered the following conjecture, 
however, which asserts that 8 = 0 in an average sense. 

MILIN CONJECTURE. For each ƒ G S, 

n m f i \ 

2 t 2 ( % I 2 - Ê ) < O , 
w=lk=\ \ K/ 

« = 1,2,., 

An application of the second Lebedev-Milin inequality shows that the Milin 
conjecture implies the Robertson conjecture, and so implies the Bieberbach 
conjecture. Grinspan [59] has verified the Milin conjecture up to n = 3. 

Closely related to the Grunsky inequalities is a system of inequalities due to 
Goluzin [52], [55], [120], [38], restricting the values a univalent function can 
take at prescribed points. Although Goluzin originally derived these inequali­
ties by Loewner's method, they are easily obtained from the Grunsky 
inequalities, and vice-versa. 

GOLUZIN INEQUALITIES. For each f G S, for distinct points zn (0 < |z„| < 1), 
and for arbitrary complex numbers Xn, 

„=!*=! " * *f(zn)f(zk)(zn - Zk) | 

N N _ j 

< 2 2AX* l ogT^71r 
(For k = n, the difference quotient is interpreted as a derivative.) 

The Goluzin inequalities are the point of departure for FitzGerald's proof 
that \an\ < (7/6)1/2«. The first step is to "exponentiate" the Goluzin inequali­
ties to get rid of the logarithms. The resulting inequalities are 
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N 

SA 
/fa) 

Z„ 

N N _ 

w = l A ; = l 

/fa) ~ ƒ fa) 
fa - **)0 " V*) 

Although FitzGerald derived them #Z> /wï/0 by recourse to the Loewner 
method, they can be deduced from the Goluzin inequalities with the aid of 
some purely algebraic results of Schur [142] concerning positive-definite 
quadratic forms (see [120], [38]). The second step is to make a suitable choice 
of the parameters Xn and zn9 and to perform certain integrations to obtain 

l«J4< £ k\ak\
2+ 2ïl {2n-k)\ak\\ 

From this it is easy to conclude that \an\ < (7/6) n. 

5. Successive coefficients. Another problem which has attracted considera­
ble attention is to estimate dn = | \an+l \—\an | |, n = 2, 3, . . . , the difference of 
the moduli of successive coefficients of functions in S. Goluzin [51] showed 
dn = 0(nl/4\ogn), and Biernacki [13] improved this to dn = O((log w)3/2). 
Then in 1963 Hayman [65] settled the order of growth problem by showing 
that dn < A, where A is an absolute constant. Milin [100], [102] found an 
alternate proof, simpler than Hayman's, which led to the bound dn < 9. Il'ina 
[72] then refined Milin's method to obtain the best bound now known: 
dn < 4.17. (A trivial modification of the proof, appealing to the FitzGerald-
Horowitz bound for \an\ instead of to Milin's, improves slightly on the 
estimate 4.26 given in Il'ina's paper.) See also [102], [120], [38]. The bound 
cannot be reduced to 1 because for each n > 4 there are odd univalent 
functions with dn > 1. Goluzin [51], [53] and Jenkins [78] found the sharp 
bounds 

- 1 < |Ö3| - \a2\ < 3/4 + e-x(2e~x - 1) = 1.029 

where 4Xe"x = 1, 0 < X < 1. (Actually, an algebraic slip led Goluzin to a 
spurious solution, but his proof by Loewner's method can be salvaged; see 
[38].) 

The corresponding problem for odd univalent functions, to find the best 
asymptotic estimate for 8n = | \c2n+\ H ^ - i 11 > *s s t ^ unsolved. It is known 
that 8n -» 0, and Goluzin [54] showed Sn = 0(n~^4logn). The best estimate 
currently known is 8n = 0(nx~^ ), due to Lucas [94]. The truth may well be 

The example [k(z4)]1'4, where k is the Koebe function, shows 

nothing better is possible. For odd functions h(z) = [f{z2)y arising as 
square-root transforms of functions / e S with positive Hayman number a, 
Milin [102], [38] has shown 

8n < cT^n-V2, « = 1,2, . . . . 

For functions h(z) = [ƒ (z4)] / with four-fold symmetry, Levin [86] showed 
long ago that c4n+l = 0{ri~x'2\ogri). It seems likely that the logarithmic factor 
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is superfluous, but even this is an open question. 

6. Subordination. A function g(z) = bxz + b1z
1 + • • • analytic in \z\ < 1 is 

said to be subordinate to a function f E S (written g < f) if the range of g is 
contained in that of/. The Schwarz lemma applied to f ~l (g(z)) then shows 
that g has the form g(z) = ƒ(<o(z)) for some analytic function <o with 
|co(z)| <,|z|. The definition is extended to general analytic functions f(z) 
« ax z + tf2z

2 + * ' * 9 univalent or not, by requiring that g have this form. A 
classical theorem of Littlewood [88], [32] asserts that subordination implies 
mean domination: if g < ƒ, then Mp(r,g) < Mp{rJ) f or 0 < r < 1 and 
0 < p < oo. Using this result, Rogosinski [128] deduced the inequality 

N N 

2 \bf< 2 kl2 * - 1,2,.... 
This inequality is remarkable in that it holds only for squares and is false for 
all exponents/? ^ 2. Even if ƒ is univalent, the subordination condition g <f 
does not imply \bn\ < \an\. For example, z2 < z. However, Littlewood and 
Rogosinski advanced the following conjecture, known as the generalized 
Bieberbach conjecture or the Rogosinski conjecture. 

ROGOSINSKI CONJECTURE. If g < ƒ E S, then \bn\ < «, n = l, 2, 

For n = 1, the Rogosinski conjecture is contained in the Schwarz lemma. 
Littlewood [88] proved it for n = 2. Rogosinski [129] proved it for all n under 
the additional assumptions that ƒ is starlike or has real coefficients. Robertson 
[124] verified it for close-to-convex functions. More recently, Robertson [126] 
observed that the Rogosinski conjecture is implied for each n by the 
Robertson conjecture; see also [37]. This extends the validity of the Rogosinski 
conjecture up to n = 4. For general n9 the best known estimate is \bn\ < en/'2, 
obtained by combining Littlewood's theorem with Baernstein's: 

Mx{r,g) < Mx(rj) < Mx(r9k) = r(l - r2)~l. 

A recent conjecture of Sheil-Small [143] lies between the Robertson and 
Rogosinski conjectures. The convolution (or Hadamard product) of two power 
series f(z) = 2 <*nz

n and g(z) = 2 bnz
n is defined as h = ƒ* g, where 

Kz)^^anbnz\ 

SHEIL-SMALL CONJECTURE. For each f E S and for each polynomial P of 
degree n,\\P* f \\O0< n\\P\\„. 

Here || Ĥ  denotes the maximum modulus in \z\ < 1. The choice P(z) = zn 

shows that the Sheil-Small conjecture implies the Bieberbach conjecture. 
Sheil-Small proved that it also implies the Rogosinski conjecture, and that it 
is implied by the Robertson conjecture. 

In connection with convolutions, it should be mentioned that Ruscheweyh 
and Sheil-Small [130] recently established a well-known conjecture of Pólya 
and Schoenberg [114] by showing that ƒ * g is convex (i.e., is univalent and has 
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convex range) whenever ƒ and g are convex. 
By way of summary, it is interesting to note that seven of the coefficient 

conjectures we have mentioned are related by a chain of implications: 

MILIN CONJECTURE => ROBERTSON CONJECTURE 
=> SHEIL-SMALL CONJECTURE => ROGOSINSKI CONJECTURE 
=> BIEBERBACH CONJECTURE => ASYMPTOTIC BIEBERBACH CONJECTURE 

=» LITTLEWOOD CONJECTURE. 

All are open. 

7. Extreme points. At first glance it appears that the methods of functional 
analysis, though useful in other branches of function theory, can shed no light 
on extremal problems for univalent functions. The space S is far from linear, 
since univalence need not be preserved under addition. In fact, A. W. 
Goodman [57] has exhibited a pair of functions in S whose sum has infinite 
valence. 

Nevertheless, it is fruitful to view S as a subset of the linear space A of all 
analytic functions in the unit disk. Under the topology of uniform conver­
gence on compact subsets of the disk, A is a locally convex space and S is a 
compact subset. The Krein-Milman theorem [29] therefore asserts that S is 
contained in the closed convex hull of its extreme points. This reduces the 
solution of any linear extremal problem in S to its solution over the set of 
extreme points of 5. By definition, a linear extremal problem consists of 
maximizing Re{L(/)} over S, where L is some continuous linear functional on 
A. For example, the Bieberbach problem of maximizing \an\ is equivalent to 
the linear problem of maximizing Rc{an}, since S is invariant under rotations. 

Thus it is important to identify the extreme points of S. This is an open 
problem, but Brickman [20] showed by an elementary argument that each 
extreme point of S maps the disk onto the complement of a continuous curve 
tending to oo with increasing modulus. The Koebe function and its rotations 
are certainly extreme points, but S has other extreme points as well. In fact, it 
is known [21] that the closed convex hull of the Koebe function and its 
rotations contains the starlike functions, but not all of S. The existence of 
other extreme points may also be inferred from the fact [141, p. 84] that some 
linear extremal problems over S admit no rotations of the Koebe function as 
solutions. A remarkable result of Hengartner and Schober [67] asserts that for 
each extreme point/, both ƒ (z)/z and log{ f(z)/z] are univalent. 

Extreme point theory has been applied with success to a number of 
problems involving special classes of functions, univalent and otherwise. For 
instance, Brannan, Clunie, and Kirwan [19] used it in their recent solution of 
the coefficient problem for functions of bounded boundary rotation. (See also 
Aharonov and Friedland [4], [5].) 

8. Qualitative results. One approach to the Bieberbach conjecture is to 
consider the extremal problem of maximizing Re{a„} in the class S and to look 
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for properties of the extremal functions (whose existence is assured by the 
compactness of S) which will eliminate all but the Koebe function and its 
rotations. This is the general strategy of the calculus of variations, developed 
for application to univalent function theory by Schiffer in the late 1930's. The 
idea of a variational method is to discover properties of an extremal function 
by comparing it with "nearby" functions in S, much in the spirit of elementary 
calculus. The typical result is the qualitative information that the extremal 
function maps the disk onto the complement of a system of analytic arcs 
satisfying a differential equation of prescribed form. This is analogous to the 
Euler equation in the classical calculus of variations. 

Although the present discussion is confined to the coefficient problem, most 
of the results extend directly to an arbitrary linear extremal problem. 
Variational methods also apply easily to nonlinear problems. 

Even elementary variational methods lead to some interesting results. A 
function in S can be varied by composing it with a self-mapping of the disk 
close to the identity. This simple device reveals that the coefficients of each 
function maximizing Re{aw} for fixed n > 2 must satisfy 

(n + l)an+l - 2a2an - (/i - \)a^Tx = 0. 

This is due to Marty [96] and is known as the Marty relation. (Observe that the 
Koebe function is still in contention.) In the same paper, Marty used another 
elementary variation to show that the range of an extremal function must be 
dense in the complex plane. 

One of the most powerful variational methods is Schiffer's method of 
boundary variation [134], [135], [137], [138], [71], [141], [38]. Very briefly, the 
idea is to compose a univalent function ƒ with a certain family of functions 
univalent on the range of ƒ and close to the identity. Applied to the coefficient 
problem max Re{a„}, the method yields the information that the omitted set T 
of each extremal function ƒ G S is a system of analytic arcs w = w(t) 
satisfying 

where Pn is a monic polynomial of degree n - 1 generated by 

ttf(z)]2
 = f p(n -

l-£ƒ(*) £iW)z-
The relation (*) determines a direction field for T. A delicate argument shows 
that Pn(l/w) cannot vanish on T, so that T has no finite branch-points or 
corners. In other words, T consists of a finite number of analytic arcs joined 
only at oo. 

In fact, T is a single arc. This step was originally taken [132], [140], [113] by 
variational methods, and with considerable difficulty. Brickman and Wilken 
[22] recently found a strikingly simply proof, based on Brickman's partial 
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description of the extreme points. Brickman's argument [20] actually shows 
that any function ƒ G S which omits two values of equal modulus must be a 
proper convex combination of two functions in S, both of which omit open 
sets. Since such functions cannot be extremal (Marty's result), it follows at 
once that ƒ is not extremal if it omits a pair of points of equal modulus. Hence 
T is a single analytic arc extending to oo with increasing modulus. 

A further argument based on (*) reveals that T has an even stronger 
monotonicity property. The tangent vector at each point w of T makes an 
angle no larger than TT/4 with the radius vector from 0 to w. It is also known 
that T has an asymptotic direction at oo. A proof of the Bieberbach conjecture 
would consist of showing that T is a linear ray. 

A differential equation for the extremal function ƒ itself can be obtained by 
introducing the parametrization w = ƒ (elt) into (*) and applying the Schwarz 
reflection principle. The result is 

where Rn is the rational function 

Rn{z) = (« - \)an + "S {vavz"-n + PO;^'). 

This is known as the Schiffer differential equation. It can also be derived, 
together with (*), by the method of interior variation [136], [132], [39], [138], 
[71], [38], which uses potential theory to obtain a variation for Green's 
function of the range domain. Still another derivation comes from a variation­
al method due to Goluzin [55], [119], [120], [38]. 

The Schiffer equation is a curious functional-differential equation which 
each extremal function must satisfy. The Koebe function is a solution, but 
other solutions (not extremal functions) have long been known; see [6]. An 
expansion of the left-hand side into power series and a comparison of the 
coefficients of z gives again the Marty relation. Thus the Schiffer differential 
equation may be viewed as an infinite sequence of "higher Marty relations". 

9. Local results. In the early 1960's Schiffer and I [39] extended the method 
of interior variation by developing a formula for the second variation of a 
function in S, analogous to the second derivative in ordinary calculus. The 
resulting formula for the second variation of Re{an) is complicated, but it 
simplifies when applied at a critical point (i.e., to a function satisfying the 
Schiffer differential equation). For the Koebe function, it reduces essentially 
to a certain quadratic form which is positive-definite if and only if the Koebe 
function is a local maximum for the nth coefficient, in the sense that the 
second variation of Re{a,J is always negative there. We verified [39] the 
positive-definiteness directly for n < 9, and Bombieri [16] later verified it in 
general, for all n. 

The question remained whether the Koebe function is a local maximum for 
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the flth coefficient in the strong sense that Re{a,J < n whenever \a2 - 2| < en> 
for some en > 0. Garabedian, Ross, and Schiffer [49] used a perturbation of 
the Grunsky inequalities to prove this for all even «. Bombieri [15], [17] 
combined the theory of the second variation with Loewner's method to obtain 
a proof for all /?, although he presented the details only for odd n. Finally, 
Garabedian and Schiffer [48] developed their generalized Grunsky inequalities 
(mentioned in §1) and used them to give an independent proof of the local 
theorem for all odd n. Pederson [111] established the equivalence of various 
topologies near the Koebe function. 

10. Coefficient problem for the class 2. The area theorem (§1) shows that the 

coefficients of functions 

g(z) = z + bxz~x + b2z~2 + • • • 

of class 2 satisfy \bn\ < n~1'2. This is sharp only for « = 1, in which case the 
extremal functions (normalized so that b0 = 0) have the form 

g(z) = z + bxz~\ \bx\ = 1, 

and map \z\ > 1 onto the complement of a line segment. In 1938, Schiffer 
[133] used a variational method to establish the sharp inequality \b2\ < 2/3, 
with equality only for the function 

g(z) = {/c(2-3)}-1/3=*-2*-73 + ---

and its rotations, where k is the Koebe function. 
This evidence suggested the conjecture \bn\ < 2/(n + 1), with equality for 

{k(z-"-l)yVin+l) = z - 2z~n/(n + 1) + • • •, 

a function whose range is the complement of a system of n + 1 radial 
segments of equal length, joining with equal angles at the origin. This 
conjecture has been proved [104], [25], [115] for functions g Ei^E whose 
omitted set is starlike with respect to the origin, and also [77], [30], [33] for 
functions with bj = 0 for 1 < j < (n — l)/2. However, the general conjec­
ture is false even for the third coefficient. As early as 1937, Bazilevic [8] had 
shown that among all odd functions g E 2, the sharp upper bound for |ft3| is 
not 1/2 as the conjecture asserts, but 1/2 + e~6. The proof is a simple 
application of the Fekete-Szegö inequality (§2) for \a3 — aa\\, with a = 3/4. 
In fact, the same argument gives (as Bazilevic observed) the sharp inequality 

l62m-il < 0 « + (2/m>~2(w+1^(w"1) 
for functions 

in 2 with m-fold symmetry, m > 2. In particular, this disproves the conjecture 
\b \ < 2/(n + 1) for every odd index n > 3. 
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Garabedian and Schiffer [47] used a variational method to extend the 
inequality \b31 < 1/2 + e~6 to the full class 2. Jenkins [78] and Bombieri [18] 
found alternate proofs, and Pommerenke [120] deduced the result from the 
Garabedian-Schiffer inequalities. Quite recently, Y. Kubota [81], [82] applied 
Jenkins' general coefficient theorem to show that for functions in 2 with real 
coefficients, the sharp inequalities 

1 4 2 729 
* 5 < 3 + 5Ö7 a n d * 4 < 5 + l6384Ö Î0T b^ > ° 

hold. For bx < 0, the sharp upper bound of b4 is slightly larger and is 
(presumably) no longer a rational number; Kubota [82] gives formulas for its 
calculation. In particular, this is the first published disproof of the conjecture 
\b4\ < 2/5. 

These results demolish the conjecture \bn\ < 2/(n + 1) and suggest that the 
coefficient problem for the class 2 is considerably more difficult than the 
Bieberbach conjecture. To make matters worse, the conjecture \bn | < 
2/{n + 1) is false asymptotically. Clunie [24] constructed functions g E 2 
with bn 7̂  0(/i~0,98), and Pommerenke [117], [118], [120] gave examples for 
which bn T^ 0(«"0,83). On the positive side, Clunie and Pommerenke [27] 
improved the trivial estimate bn = 0(n~l/2) to bn = 0(n~l/2-l/m). The 
precise order of growth is not known. 

11. Bounded univalent functions. Another problem of long standing is to find 
the sharp asymptotic estimate for the coefficients of bounded univalent 
functions. Each bounded function ƒ E S maps the unit disk onto a region of 
finite area, and so its coefficients satisfy 2 n\an\ < oo. In particular, an 

= o{n~^2). This trivial estimate was thought to be essentially best possible 
until Clunie and Pommerenke [27], [120] improved it to an = O(n~1/2~1/30°). 
Their work reveals a surprisingly close connection with the asymptotic 
problem for the class 2. 

In the opposite direction, Littlewood [89] had constructed examples of 
bounded univalent functions with an =£ 0(n~l). Pommerenke [117] improved 
the result to an ^ O(n~0Ml) and later [118] to an # 0(«"a83). 

All of these constructions actually produce bounded univalent functions 

/(z) = 2 + «m+1z'"+1+a2m+1z2 '"+1 + . . . 

with m-fold symmetry, where m is an arbitrary positive integer. For such 
functions an old conjecture of Szegö asserts that an = 0(n2/m~x). This seems 
plausible because the coefficients of the mth-root transform of the Koebe 
function, ƒ(z) = [k(zm)]l/m, have precisely this order of growth. The conjec­
ture is of course true for m = 1 and for m = 2 (Littlewood-Paley [90]). Levin 
[86] proved it for m = 3. He also showed for m = 4 that an = 0(n^2\ogn), 
and for m > 5 that 

«„ = 0(n-V2{\oenf2). 
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Littlewood's construction disproves Szegö's conjecture for all sufficiently large 
w, and Pommerenke's construction disproves it for all m > 12. For 4 < m 
< 11, the conjecture remains unsettled. For m > 5, Clunie and Pommerenke 
[27] improved Levin's result to an = 0{rTx'2~e) for some e > 0, and Pommer­
enke [120] showed that e can be taken to be 1/1600. 

These latter results do not actually require m-fold symmetry. The important 
condition is a growth estimate on ƒ, which is achieved by requiring that the 
Taylor series be suitably lacunary. 

12. Conclusion. The theory of univalent functions is an enormous subject 
with a literature extending back to the turn of the century. This brief survey 
could not possibly do it justice. I have been compelled to omit a number of 
interesting topics, or to mention them only in passing. Making no attempt at 
completeness, I have tried to convey the spirit of the subject and the flavor of 
recent developments, while recording some of the major unsolved problems. 
At the very least, the discussion should suggest that the venerable field of 
complex analysis is alive and well. 

The reader who wishes to explore the subject in greater depth is advised to 
consult the recent book of Pommerenke [120] or my forthcoming book [38]. 
Some older sources are the books of Goluzin [55], Hayman [63], Jenkins [76], 
and Schaeffer and Spencer [132]. There are also recent books in Russian by 
Milin [102] and Lebedev [84]. 

I wisk to thank Albert Baernstein, Walter Hayman, and Glenn Schober for 
their helpful criticism of the first draft of this paper. 
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