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Let Xn be a sequence of real-valued random variables adapted to an in­
creasing sequence of a-algebras Fw. We denote by T, Tp T respectively the col­
lection of bounded, finite, and arbitrary stopping times for (Fw)nGN . This paper 
reports on recent progress concerning the theory of semiamarts, i.e. processes for 
which (EXT\^T is bounded, initiated in [3], and the theory of amarts, Le. pro­
cesses for which limrG:r EXr exists. We relate the notion of semiamart to proces­
ses of interest in the theory of optimal stopping (cf. [2] ), namely Xn such that 
\EX^\ < °° for M G Tp or for nET. For independent random variables Xn and 
for processes of the form Xn = c~* 2^-j Yt with increasing c„'s and indepen­
dent nonnegative Ff.'s, a new dominated estimate 

£(sup X£) < K sup EXp (=KV(T)) 

with K = 2 in the first and K < 5.46 in the second case, shows that such process­
es are semiamarts if and only if suplX„ I is integrable. Also in the case when 
F„ = Fm for all n9 m E N, a semiamart has a necessarily integrable supremum. 
This observation is used to construct averages of aperiodic stationary sequences, 
which are not semiamarts—thereby strengthening a result announced by A. Bellow 
[1]. This can be done also in the "descending" case, i.e. when the time domain 
N is replaced by -N (see [3]); thus our results indicate that there are no con­
nections between the amart theory and the ergodic theory of point transforma­
tions. 

THEOREM 1 (RIESZ DECOMPOSITION FOR SEMIAMARTS). Every semiamart 
(Xn, F„) can be represented as Xn — Yn + Zn where (Yn, Fn) is a martingale 
and (Zw, F„) w an L ̂ bounded semiamart such that for each A E (J Fw 

\ n C 1 n f 
lim inf - Y I Z, < 0 < lim sup - Y J . Z,. 

n r-*J A l n —. J A l 

n i = l n 1=1 

This generalizes the Riesz decomposition for amarts [3]. A variant of 
Theorem 1 permits us to give necessary and sufficient conditions for the unique­
ness of the Riesz decomposition. One consequence of the Riesz decomposition is: 
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THEOREM 2. Let Xn be a semiamart {amart) such that for some a > 1 
SJLJ r{l+a)E\Xt - XHi \la < oo; then suplX„l/rt < °° a.s. (resp. Xjn ~> 
0 a.s.). 

Theorem 2 extends the strong law of large numbers for martingale differen­
ces; a somewhat weaker version of this, and of the next theorem, appears in [3]. 

THEOREM 3 (AMART OPTIONAL SAMPLING THEOREM). Let ju„ G Tf9 nx < 

1*2 ^ ^3 ^ * ' ' • Let Xn be an amart, Xn = XMw and assume 
(a) E\Xn\<°oyneNand 
(b) l im J V_€ 0 / { M | | > J v } lJr J v l=OV«€N. 

Then {Xn, Gn) is an amart where Gn = FMn = {A G F: A O {JU„ = k} G 
FfcVfc}. ƒƒ A/SO M„ "~* °° tftew ffte i?/esz decomposition of Xn has the martingale 
part Yn = YjJLn and the potential part Zn = ZMw, where Yn + Zw fe ffte ^mart 
/Wesz decomposition of'Xn. 

THEOREM 4. Tftere exwft a semiamoKt which converges a.s. and in Lx but 
is not an, amart. 

There exist two simple methods of construction of amarts and semiamarts: 
(1) each adapted sequence Xn is a semiamart if suplXw I G Lt. Such a sequence 
is an amart iff in addition Xn converges a.s.; (2) quasimartingales are amarts. 

THEOREM 5. In general a semiamart or amart cannot be decomposed into 
two summands arising from constructions (1) and (2). In fact, there exists a 
nonnegative predictable amart which is a potential {the martingale part in its 
Riesz decomposition vanishes), with supw E(Xn log+Xw) < 1 and E sup Xn = °°. 

THEOREM 6. Let {Xn)nG^ be a sequence of adapted random variables for 
the increasing sequence (Fw)„eN, with sup E\Xn I = M < °°. {Xn) is a semiamart 
iff for each v G T such that E(l{v<00yXv) is defined as an extended real number, 
one has \E{\^v<00yXu)\ < °°. If the o-algebra F*, generated by all Vn's is non-
atomic, a further equivalent condition is: for each v G Tf such that EXV is de­
fined as an extended real number, one has \EXV I < °°. 

If (EXT)TGT is unbounded from above one can find v with EX~ < °° and 
EX* = °°. Thus the theorem can be interpreted as saying that for Lx -bounded 
processes with infinité value V{T) = sup r e r EXT, the value V{T) is assumed, 
and V(Tf) is assumed if F*, is nonatomic. In the descending case V{Tf) = °° is 
assumed if (Xn) is Lx -bounded or each F_w is nonatomic. Since then V{Tf) = °° 
is equivalent to V{T) = °°, this yields an analogous characterization of descending 
semiamarts. 

THEOREM 7. If{Xn) is adapted to (Fn) and Xn + Î is independent of Fn 

for all n, then E sup X+ < 2V{T). 

We only showed the existence of a constant K0 such that 2 < K0 < 4, 
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and E sup X* < K0 V(T). That KQ may be chosen equal to 2 is due to D. 
Garling. 

Now let (Yn) be adapted to the increasing family (F„) and assume that 
Yn+1 is independent of Vn for all n. Call (Xn) a sequence of averages of non-
negative independent random variables if Xn is of the form Xn = c~l S"=1 Yi 

with 1 < cx < c2 < • • • . 

THEOREM 8. If(Xn) is a sequence of averages of nonnegative independent 
random variables then £(sup Xn) < 5.46 where V = V(T) = V(Tf) = V(T). 

This result has an interesting probabilistic interpretation. If Xn is the for­
tune of a player at time n, then V is the maximal expected gain of a player A 
using nonanticipating stopping rules. E sup Zw equals supM EX^ where the 
supremum is over all measurable random variables jit: £2 —> N. Thus F sup JF„ 
is the maximal expected gain of a player B endowed with complete foresight. 
The theorem may be interpreted as saying that, whatever be the sequence of 
distributions, the odds 5.46:1 are favorable to A even against an omniscient 
opponent B playing the same game. 

A consequence of Theorem 9 is that a sequence of averages of nonnegative 
independent random variables is a semiamart for (F„) iff sup Xn GLt. 

Call a point-transformation S aperiodic if there exists no measurable B 
with P(B) > 0 such that for some n EN and all measurable A C B, the sym­
metric differences A A S~~nA has measure 0. The result of A. Bellow [1] is 
strengthened by 

THEOREM 9. If S is an aperiodic invertible measure preserving transforma­
tion of (O, F, P) then there exists an f G L^ for which Xn=rCx 2^=0 ƒ ° Sk 

is not a semiamart, ascending or descending. 
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