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The first title of this book is Order and potential If the nonspecialist reader 
opens it at any page, just looking for familiar words, he can be sure to see 
some mention of order, and has reasonable chances to find potentials, but 
may wonder whether the use of the latter word has anything to do with 
newtonian potential, harmonic functions and similar things. After all, the 
word potential has different connotations in different contexts (the military 
potential of the United States, the industrial potential of Europe) and the 
recurrent mention of a mysterious "domination principle" might lead to 
further political misinterpretations. So let me tell first what the subject of the 
book really is. 

We must come back to the early history of the subject. Between 1945 and 
1950, H. Cartan proved some fundamental results in classical potential 
theory, which were rapidly digested, generalized and improved by the French 
school of potential theory around M. Brelot, G. Choquet and J. Deny. The 
axiomatic trend had always been felt in potential theory (the use of the old 
word "principle" to mean "axiom" may be good evidence for it), and anyhow 
the years 1950 were those of the big axiomatic boom in mathematics. Hence 
it is entirely natural that the interest shifted from potential theory to potential 
theories defined by suitable axioms. Among the interesting features of classi­
cal potential theory, the so called complete maximum principle came to play a 
leading role. It can be easily stated and understood, as follows. Let u and v be 
two newtonian potentials of positive measures A and /x, and let a be a positive 
constant. Assume that 

(1) a + u > v on the closed support F on the measure fi corresponding to 
v. 

Then the same inequality takes place everywhere. This is almost obvious. 
In the open set Fc complement of F, the function a + u — v is super-
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harmonic, so it dominates the infimum of its boundary values. Since the 
boundary is contained in F where a + u — v is positive by assumption, 
a + u — v must be positive in Fc> The point in the presence of a is the fact 
that a constant function is superharmonic, but is not a potential. The same 
statement with a = 0 is a substantially weaker axiom (domination principle), 
and the same is true if u = 0 (ordinary maximum principle). In the years 
1950-1951 two papers were published, one by Cartan and Deny [1], one by 
Deny [2], which are relevant to us because of the following remark. Let JU, be 
any positive measure on Rn, of total mass < 1, and let a be the measure 

(2) a - c f ii*n 

o 

where c is a positive constant, and ii*n is the nth convolution power of /x. 
Assuming a is finite on compact sets, let ƒ be a positive function1, and call 
potential of ƒ the convolution a * ƒ « Uf Then [/satisfies many "principles" 
of potential theory, including the complete maximum principle, in the form 
appropriate to functions instead of measures: if a is a positive constant, if ƒ 
and g are positive functions, then a + Uf > Ug on the set where g > 0 
implies the same inequality everywhere. They also remarked that the measure 
dx/\x\n*~2 which defines the newtonian potentials, can be approximated by 
measures an which can be represented as (2). More generally, there seemed to 
be an intimate connection between the following two properties of the 
positive measure a: (I) The operator Uf — a * ƒ satisfies the complete maxi­
mum principle, (2) a can be approximated by measures an as above. This was 
already the very heart of our subject! 

Let us say that an operator U which takes positive functions ƒ into positive 
functions Uf is a kernel if the value Uf(x) of Uf at x is the integral of ƒ with 
respect to some positive measure U(x, dy). Let us say that a kernel U defines 
a potential theory if the complete maximum principle is satisfied. This is far 
more general than convolution kernels. The fundamental work of Doob [3, 
1954], [4, 1955] and Hunt [5, 1957] in probability theory had led to the 
conclusion that if (Pt) is a semigroup of kernels, that is a family (Pt)t>0 such 
that 

(3) P,W)~P,+if> pof = f for all/ 
and also Pt\ = 1 (this can be relaxed to Pt\ < 1), then the kernel 

(4) Uf-T PJdt 

defines a potential theory. The original proof of this result was probabilistic, 
but more recent proofs are analytic and require practically no regularity 
assumptions. Even more striking was the converse: Hunt proved that any 
"reasonable" potential theory arises in this way. There is a relation between 
this result and that of Cartan and Deny: in (2), the powers of fx correspond to 
a discrete semigroup, instead of a continuous one. The gist of the passage 
from discrete to continuous semigroups is the replacement of an approxima­
tion of the potential kernel by an exact representation like (4). 

!A11 "functions" here and below are assumed to be measurable with respect to appropriate 
a-fields. We are not concerned with such details in a review. 
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To understand the book of Cornea and Licea, one step is still missing. 
Hunt's way from U to (Pt) is not direct. There is an intermediate construc­
tion, that of the operators 

(5) UjJ'- rVA<PJdt for A>0 
•'o 

which are connected to U by the "algebraic" relation 

(6) C/= UX(I + \U) 

(meaning Uf = Uxf + Af/([/A/) if ƒ is a positive function), and to each other 
by the so called resolvent equation 

(7) t / „ = t / x ( / +(A- ,*) [ /„ ) 

if /jt < X. On the other hand, the inequality Pt\ < 1 is reflected in the 
inequality À f/A 1 < 1 satisfied by the "resolvent" (Ux)x>0. Hunt's method 
consists in a very clever construction of the family (Ux) from equation (6), 
depending in an essential way on the complete maximum principle (Hunt's 
proof was entirely freed from probabilistic "impurities" by Lion, [6, 1966]). So 
Hunt's way was 

Kernel -» Resolvent —> Semigroup ( —» Markov process) 

Step (b) reduces to an application of the Hille-Yosida theorem in "good" 
cases, but in general situations may require some compactification of the 
space, Ray [9, 1959]. No matter: from the analytical point of view, the 
semigroup is a luxury. Everything can be done using the resolvent only. Besides 
that, the identity 

(8) {l+U=±%(\Ux)
n 

is strikingly similar to the Cartan-Deny representation (2): one just adds to U 
a "small" multiple of the identity kernel ƒ, and the situation reduces to the 
discrete one. 

This is why, in the book, resolvents are defined in an axiomatic way, as the 
main object of potential theory. The authors even consider something more 
general than kernels (i.e. mappings of the cone of positive functions into 
itself), namely, mappings of some "a-lattice cone" into itself, with the 
advantage that three forms of potential theory are taken under the same roof: 
the theory of superharmonic functions, that of superharmonic measures (in the 
classicial case, they turn out to be the same), and finally that of super­
harmonic classes of functions neglecting suitable sets of measure 0 (the 
"semiclassical potential theory" of Kac, see for instance Stroock [10, 1967]. 
The disadvantage is that of abstraction. 

Now, does the book contain results which are general and deep? I would 
like to quote at least one of them, and this requires some definitions, though 
the reader of this review may note that the quite precise meaning of U, Ux 

has not been given. A potential is a function2 g which can be represented as 

2We are returning to the case of functions, rather than a-lattice cones. 
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Uf,f>0;f isn't quite unique, but any two versions of it are equal a.e., that 
is, except on a set of potential zero. Potentials are particular cases of excessive 
functions, i.e. any potential g satisfies the relations 

(9) g > 0, XUxg < g for all A, lim \Uxg « g 
A-»oo 

if the third property is deleted, we have the slightly more general definition of 
a supermedian function. Another important definition is that of the specific 
order between functions: we say that ƒ < # if £ = ƒ + / * , where h is a 
supermedian function. 

One of the basic notions of potential theory is that of the réduite, due to 
Mokobodzki. Given any function ƒ, possibly taking negative values, we 
denote by Rf the lower bound of all supermedian functions larger than/. It is 
not obvious that it exists as a measurable function, but it does. Even less 
obvious is the striking result that ƒ < g =» Rf < Rg. Mokobodzki has used 
the properties of the réduite as a tool to prove the following generalization of 
the Lebesgue derivation theorem on the line. 

Consider on the line the semigroup (Pt) defined by PJ(x) = ƒ(x + /)• This 
semigroup has a resolvent ( f/A)-which we do not write-and the corresponding 
excessive functions are just the nonincreasing, right continuous functions. The 
potential operator is Ug(x) = f™g(t) dt. Thus an excessive function is a 
potential if and only if it is absolutely continuous, and tends to 0 at +oo. 
Finally, set DJ(x) = (f(x) - f(x + h))/h for h > 0, and D*f(x) = 
s\xphDJ(x). 

The Lebesgue theory of derivation tells us that:(l) for any excessive 
( = decreasing) ƒ, DJ converges a.e. in the sense of Lebesgue measure. 

(2) Denoting by Df this limit, the potential UDf is the absolutely continu­
ous part of/. 

(3) The potential f™I{D*f>c)(t) dt is at most f(x)/c. This is the Hardy-Lit-
tlewood maximal lemma. 

This result extends to resolvents as follows. For simplicity, assume there is 
a semigroup (Pt) associated to the resolvent, define DJ = (ƒ — PJ)/h 
(ƒ excessive, h > 0) and D*f = sup;, DJ. Then 

(1) DJ converges a.e. (that is, except on a set of potential 0). 
(2) Denoting by Df this limit, UDf is the largest potential dominated by ƒ in 

the specific order sense. 
(3) The potential U(I^D*f>c^) is at most f(x)/c. 
You may find an abstract version of this remarkable theorem in Chapter 

III,§2. So we can say this "Lecture Notes" volume contains practically 
everything that is known to the present day about the potential theory of a 
resolvent. There is, however, a noteworthy exception, that of the "Martin 
representation" of excessive functions as integrals of extremal excessive 
functions, also due to Mokobodzki. In the case of a resolvent (Ux) consisting 
of kernels, however, this theorem requires the absolute continuity of all 
measures U(x9 dy) with respect to a fixed measure, and requires techniques of 
a rather special kind. So the exception is quite understandable.3 

As a conclusion, I would like to say this is a very valuable book, and 
certainly will long be used as a reference in the field of potential theory. 

3For an abstract version, see Mokobodzki [8]. 
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The Nobel Prize in Economics for 1975 was awarded to Leonid V. 
Kantorovich and Tj ailing C. Koopmans for their contributions to the theory 
of optimum allocations of resources. This event emphasized the fact that the 
mathematics of operations research has been developed in parallel with 
economic theory. Books on operations research, such as the one under review, 
emphasize optimization problems, especially linear programming, game theory 
and control theory. These topics have been developed in the past thirty years 
and a sketch of this development may help to put in perspective the 
mathematics, presented in this book in a rather terse style. 

In 1928 John von Neumann [16] gave a mathematical formulation of games 
of strategy and proved the celebrated minimax theorem justifying his defini­
tion of the value of a noncooperative game. This work was not pursued further 
until the economist Oskar Morgenstern, having been forced to leave Vienna, 
came to Princeton University and, during the classical tea in Fine Hall, talked 
with von Neumann about games and economics. This conversation led to the 
collaboration between Morgenstern and von Neumann which resulted in the 
publication in 1944 [17] of their famous book The theory of games and economic 
behavior. A fascinating account of this collaboration may be found in [11]. 

In 1939 the Russian mathematician Leonid Kantorovich published a paper 


