SECOND ORDER ELLIPTIC EQUATIONS WITH MIXED BOUNDARY CONDITIONS

BY A. J. PRYDE

Communicated by C. Davis, October 27, 1976

We consider the mixed boundary value problem (MBVP) Au=f in Ω , $B^+u=g^+$ in Γ^+ , $u=g^-$ in Γ^- where Ω is a bounded open subset of R^n whose boundary Γ is divided into disjoint open subsets Γ^+ and Γ^- by an (n-2)-dimensional manifold ω in Γ . We assume $A=\sum_{|\alpha|\leq 2}a_{\alpha}(x)D^{\alpha}$ is a properly elliptic operator on Ω and $B^+=\sum_{j=1}^nb_j^+(x)D_j+b_0(x)$ is a normal boundary operator satisfying the complementing condition with respect to A on Γ^+ . The coefficients of the operators and Γ^+ , Γ^- and ω are all assumed arbitrarily smooth.

Throughout, s will denote a real number with $s \not\equiv \frac{1}{2} \pmod{1}$. For $G = R^n$, R_{\pm}^n , Ω or Γ , the Sobolev spaces $H^s(G)$ are as in Lions-Magenes [1]. Also $H^s(\Gamma^{\pm})$ is the space of restrictions to Γ^{\pm} of distributions in $H^s(\Gamma)$, with the infimum norm, and $H_A^s(\Omega) = \{u \in H^s(\Omega) \colon Au \in L^2(\Omega)\}$ with the graph norm. Let $\gamma_0 \colon H_A^s(\Omega) \to H^{s-1/2}(\Gamma)$ be the trace map, $r^{\pm} \colon H^{s-1/2}(\Gamma) \to H^{s-1/2}(\Gamma^{\pm})$ the restriction maps, and $\gamma^- = r^-\gamma_0$. Then $B^+ = r^+B$ for some first-order normal boundary operator B on the whole of Γ .

Consider the maps $(A, \gamma^-, B^+)_s$ defined as

$$(A, \gamma^-, B^+): H^s(\Omega) \to H^{s-2}(\Omega) \times H^{s-\frac{1}{2}}(\Gamma^-) \times H^{s-\frac{3}{2}}(\Gamma^+) \quad \text{if } s > 3/2,$$

 $(A, \gamma^-, B^+): H^s_A(\Omega) \to L^2(\Omega) \times H^{s-\frac{1}{2}}(\Gamma^-) \times H^{s-\frac{3}{2}}(\Gamma^+) \quad \text{if } s < 3/2.$

These maps are bounded for all s, by the condition of normality for s < 3/2 (see for example [1, §2.8.1]). The MBVP is called well-posed if there exists $s \neq \frac{1}{2} \pmod{1}$ for which $(A, \gamma^-, B^+)_s$ is Fredholm. A bounded linear operator between Hilbert spaces is called α -semi-Fredholm (α sF) if it has finite dimensional kernel and closed range, β -semi-Fredholm (β sF) if it has closed range with finite codimension, and Fredholm if it is α sF and β sF.

THEOREM. For each $x \in \omega$ there is an open subset I_x of the reals such that for $s \not\equiv \frac{1}{2} \pmod{1}$, $(A, \gamma^-, B^+)_s$ is Fredholm if and only if $s \in I = \bigcap_{x \in \omega} I_x$. Moreover, I is open and so the MBVP is well-posed if and only if I is non-empty. In fact, for each $x \in \omega$ there is a real number e_x determined algebraically

AMS (MOS) subject classifications (1970). Primary 35J20, 35J25, 47F05.

Key words and phrases. Mixed boundary value problem, properly elliptic operator, Sobolev space, Fredholm operator, well-posed problem, sesquilinear form, spaces with homogeneous norms, Wiener-Hopf operator.

392 A. J. PRYDE

by the coefficients of A and B^+ at x such that—with $e = \{ r \in \mathbb{R} : r \equiv e_x \pmod{1} \}$ for some $x \in \omega \}$:

- (a) if n = 2, $I_x = \{ r \in \mathbb{R} : r \neq e_x \pmod{1} \}$ and, hence, I = R e;
- (b) if n=3, $I_x=(e_x, e_x+1)$ or $I_x=\emptyset$, and $(A, \gamma^-, B^+)_s$ is $\alpha sF(\beta sF)$ if and only if $s\notin e$ and $s>\sup_{x\in\omega}e_x$ ($s<\inf_{x\in\omega}\widetilde{e}_x$) where \widetilde{e}_x is e_x+1 in the first case, and e_x in the second;
- (c) if n > 3, $I_x = (e_x, e_x + 1)$ and $(A, \gamma^-, B^+)_s$ is $\cos F$ ($\beta s F$) if and only if $s \notin e$ and $s > \sup_{x \in \omega} e_x$ ($s < \inf_{x \in \omega} e_x + 1$).

Peetre [2] showed that $(A, \gamma^-, B^+)_s$ is Fredholm for s > 3/2 and $s \notin e$, without the assumption of normality, but only for n = 2. Shamir [5] and Visik and Eskin [6] provided elements of the solution of the MBVP for n > 2, but the restriction s > 3/2, required for nonnormal problems, and in addition, the problems of localising when s < 3/2, prevented them from finding necessary and sufficient conditions for the problem to be well posed in our sense.

For normal B^+ , we can construct a bounded sesquilinear form $J^s[u, v]$ on a closed subspace $V^s(\Omega) \times W^{2-s}(\Omega)$ of $H^s(\Omega) \times H^{2-s}(\Omega)$ such that $(A, \gamma^-, B^+)_s$ is $\alpha sF(\beta sF)$ if and only if J^s is $\alpha sF(\beta sF)$ in the sense that the operator $T^s: V^s(\Omega) \longrightarrow W^{2-s}(\Omega)^*$ defined by $\langle T^s u, v \rangle = J^s[u, v]$ is $\alpha sF(\beta sF)$. This result is an easy consequence of Pryde [3].

By Peetre's lemma [1, Lemma 2.5.1] J^s is αsF if and only if

$$(1) \quad \|u\|_{V^{s}(\Omega)} \leq c \left(\sup_{v \in W^{2-s}(\Omega)} \quad \frac{|J^{s}[u, v]|}{\|v\|_{W^{2-s}(\Omega)}} + \|u\|_{H^{s-1}(\Omega)} \right), \quad u \in V^{s}(\Omega),$$

and β sF if and only if

(2)
$$\|v\|_{W^{2-s}(\Omega)} \le c \left(\sup_{u \in V^{s}(\Omega)} \frac{|J^{s}[u,v]|}{\|u\|_{V^{s}(\Omega)}} + \|v\|_{H^{1-s}(\Omega)} \right), \quad v \in W^{2-s}(\Omega).$$

The advantage of looking at forms is that their estimates can be localised for all s. For this we use spaces with homogeneous norms, $Z^s(G)$ and $Z^s(G)$ for $G = \mathbb{R}^n$ or \mathbb{R}^n_{\pm} . In fact, let $[u; G]_s$ be the norm on $C_0^{\infty}(\overline{G})$ defined by

- (i) if s = 0, $[u; G]_s = ||u||_{L^2(G)}$;
- (ii) if 0 < s < 1, $[u; G]_s = (\int_G \int_G |u(x) u(y)|^2 / |x y|^{n+2s} dx dy)^{1/2}$;
- (iii) if $s \ge 1$, $[u; G]_s = (\Sigma_{|\alpha|=[s]} [D^{\alpha}u; G]_{s-[s]}^2)^{1/2}$ where [s] is the integral part of s.

For $s \ge 0$, $Z^s(G)$ $(\mathring{Z}^s(G))$ is the completion of $C_0^{\infty}(\overline{G})$ $(C_0^{\infty}(G))$ with respect to $[u; G]_s$. For s < 0, $Z^s(G)$ $(\mathring{Z}^s(G))$ is the strong dual of $\mathring{Z}^{-s}(G)(Z^{-s}(G))$.

These spaces have been considered before, but their theory not fully developed. See, for example, Shamir [4]. They are the natural spaces for boundary value problems in \mathbb{R}^n_+ with homogeneous operators and constant coefficients.

For each $x \in \omega$, we freeze the coefficients of A and B^+ at x, and drop all lower order terms, obtaining homogeneous operators with constant coefficients A_x and B_x^+ . Define $(\gamma^-, B^+)_{s,x}$ to be

$$(\gamma^-, B_x^+): Z_{\ker A_x}^s(\mathbb{R}^n_+) \longrightarrow Z^{s-\frac{1}{2}}(\mathbb{R}^{n-1}_-) \times Z^{s-3/2}(\mathbb{R}^{n-1}_+)$$

where $X_{\ker A}$ denotes the kernel of an operator A in the space X.

Using the results of Pryde [3] repeatedly, and the usual localisation techniques, it follows that J^s is αsF (βsF) if and only if $(\gamma^-, B^+)_{s,x}$ is left invertible (onto) for each $x \in \omega$.

Following Peetre [2], we then construct certain Wiener-Hopf operators $r^+M_x^s\colon L^2(\mathbb{R}^{n-1}_+)\longrightarrow L^2(\mathbb{R}^{n-1}_+)$ whose symbols are determined by the coefficients of A_x and B_x . It follows that $(\gamma^-, B^+)_{s,x}$ is left invertible (onto) if and only if $r^+M_x^s$ is left invertible (onto).

Finally, using the results of Shamir [5], we find real numbers e_x , \widetilde{e}_x and open sets I_x as above, such that $r^+M_x^s$ is an isomorphism if and only if $s \in I_x$. Moreover, if $n \ge 3$, $r^+M_x^s$ is left invertible (onto) if and only if $s > e_x$ ($s < \widetilde{e}_x$) and $s \not\equiv e_x \pmod{1}$. If n > 3, $\widetilde{e}_x = e_x + 1$ and if n = 3, $\widetilde{e}_x = e_x + 1$ or e_x .

Detailed proofs and corresponding results for higher order operators will appear in another paper. The work was part of a Ph.D. thesis at Macquarie University. I am indebted to my supervisor Alan McIntosh.

REFERENCES

- 1. J. L. Lions and E. Magenes, Nonhomogeneous boundary value problems and applications, Vol. 1, Dunod, Paris, 1968; English transl., Springer-Verlag, Berlin and New York, 1972. MR 40 #512; 50 #2670.
- 2. J. Peetre, Mixed problems for higher order elliptic equations in two variables. I, II, Ann. Scuolo. Norm. Sup. Pisa (3) 15 (1961), 337-353; ibid. 17 (1963), 1-12. MR 25 #4240; 28 #328.
 - 3. A. J. Pryde, The five lemma for Banach spaces, Proc. Amer. Math. Soc. (to appear).
- 4. E. Shamir, Mixed boundary value problems for elliptic equations in the plane. The L^p theory, Ann. Scuola Norm. Sup Pisa (3) 17 (1963), 117-139. MR 28 #329.
- 5. Multipliers of Fourier transform in a half-space, Bull. Amer. Math. Soc. 71 (1965), 165-167. MR 30 #2296.
- 6. M. I. Višik and G. I. Eskin, Equations in convolution in a bounded region, Uspehi Mat. Nauk 20 (1965), 89-152 = Russian Math. Surveys 20 (1965), 85-151. MR 32 #2741.

SCHOOL OF MATHEMATICS AND PHYSICS, MACQUARIE UNIVERSITY, NORTH RYDE, N.S.W., 2113, AUSTRALIA