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1. Introduction. A map p: X—• Y between two spaces induces a homo-
morphism p*: h(Y) —• h(X) between the cohomology groups of the spaces, 
where h is an arbitrary cohomology theory. In certain situations a transfer homo-
morphism T*: h(X) —* h(Y) has been defined by Becker and Gottlieb, Dold and 
others. The compositions r* ° p*: h(Y) —+ h(Y) and p* ° r*: h(X) —• h(X) are 
of considerable interest as they relate the cohomologies of X and Y. The first 
type of composition is relatively easy to compute. The second is, in general, 
quite difficult. 

Let G be a compact Lie group with H and K arbitrary closed subgroups 
with associated /-universal classifying spaces BGt BHf BK. Let p(H, G): BH —• 
BG be the natural projection. Then transfers 1\Hf G): h(BH) —* h(BG\ T(Kt G): 
h(BK) —• h(BG) are defined by Dold's definition where I\H, G) = T?d

H in 
Dold's notation [D]. The main theorem is a double coset type theorem which 
generalizes the classical double coset theorem for finite groups [C—E, p. 257], 
It is proved for arbitrary compact Lie groups. 

2. Main result. Let AT IG I//be the double coset space obtained as the 
orbit space of the left action of K on G/H. This space breaks up into a finite 
disjoint union of orbit-type manifold components {M(}. Let gt G G be a repre­
sentative of Mv Let x#(Wf) ^ xOMj-) ~ X(Mt - Mt) be the internal Euler character­
istic of Mv Then if H8 = gHg~l we have 

THEOREM 1 (DOUBLE COSET). 

p*(K, G) o T(Hf G) = £ X#(M^TQPi nK,K)<> p*(pt n K, H*i) o Cgt 

where the sum is over the orbit-type manifold components ofK\G\H. Cg: h(BH) 
—• h(BlP) is the cohomology isomorphism induced by the obvious map from 
BHg to BH. 

This theorem holds where G is a compact Lie group and H and K are arbi­
trary closed subgroups. 
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Theorem 1 simplifies in special cases, e.g. when it is known that x#(Mj) = 

0. In particular, the following easily proved result is often useful. 

THEOREM 2. Assume NG{H)jH is not discrete where NG(H) is the normal 
izer of H in G. Then T(H, G) = 0. 

3. Examples. In the case where G is finite the double coset space K\G\H 
is discrete. Since x#(pt.) = 1 we recover the classical double coset theorem for 
finite groups. 

Among many other corollaries to Theorem 1 we have 

THEOREM 3. Let G be a compact Lie group with H any closed subgroup 
of G. Let K be an arbitrary torus in G. Then 

p*(Kt G) o T(Ht G) = £ x # W ( * , # 0 • Cg( 

where the sum is over the manifold components of the fixed point set. 

THEOREM 4. Let G(ri) = U(n\ H(ri) = 2„ ^ f/(i) the wreath product of 
the permutation group on n letters Zn and 17(1). Let K(n) = U{n - 1). Then 
the diagram 

n(n - 1) 
BH(n - 1)— iBH(n) 

BU(n - 1) P(n) > BU(n) 

satisfies the following stability condition 

p*(n) o T(H(n)t U(n)) = T(H(n - 1), U(n - 1)) ° **(>? - 1). 

A similar formula for the orthogonal groups appears in printed version of 

a talk by J. C. Becker [B]. 

THEOREM 5. Let G(n 4- m) = U(n + m), H(n + m) = 2 W + W \ 17(1), 
K(n, m) = U(n) x U(m). Then the diagram 

BH(n) x BH(m) -?-> BH(n + m) 

BU(n) x BU(m) - ^ BU(n + m) 

satisfies the following relation 

p* o T(H(n + m), U(n + m)) = T(H(n) x H(m)9 U(n) x U(m)) o ff*. 

Both Theorems 4 and 5 are proven by using Theorem 2 to simplify the 
double coset formula to a single term. 

4. Proof. The proof of Theorem 1 is geometric and involves constructing 
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a A"-equivariant deformation of the identity map of G/H by appealing to the 
covering homotopy theorem of Palais [Br, p. 97]. Elementary properties of the 
transfer are then used. The proof with minor modifications applies to more 
general situations. 

REFERENCES 

[B] J. C. Becker, Characteristic classes and ^-theory (talk). 
[Br] G. E. Bredon, Introduction to compact transformation groups, Academic Press, 

New York, 1972. 
[C-E] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Prince­

ton, N. J., 1956. MR 17, 1040. 
[D] A. Dold, Transfert des points fixes d'une famille continue d'applications, C. R. 

Acad. Sci. Paris Sér. A 278 (1974), 1291-1293. MR 50 #1231. 
[F] Mark Feshbach, The transfer and compact Lie groups, Thesis, Stanford Univ., 

1976. 

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVAN-
STON, ILLINOIS 60201 


