THE TRANSFER AND COMPACT LIE GROUPS

BY MARK FESHBACH

Communicated by Edgar H. Brown, Jr., November 1, 1976

1. Introduction. A map $\rho: X \to Y$ between two spaces induces a homomorphism $\rho^*: h(Y) \to h(X)$ between the cohomology groups of the spaces, where h is an arbitrary cohomology theory. In certain situations a transfer homomorphism $\tau^*: h(X) \to h(Y)$ has been defined by Becker and Gottlieb, Dold and others. The compositions $\tau^* \circ \rho^*: h(Y) \to h(Y)$ and $\rho^* \circ \tau^*: h(X) \to h(X)$ are of considerable interest as they relate the cohomologies of X and Y. The first type of composition is relatively easy to compute. The second is, in general, quite difficult.

Let G be a compact Lie group with H and K arbitrary closed subgroups with associated l-universal classifying spaces BG, BH, BK. Let $\rho(H, G)$: $BH \longrightarrow BG$ be the natural projection. Then transfers T(H, G): $h(BH) \longrightarrow h(BG)$, T(K, G): $h(BK) \longrightarrow h(BG)$ are defined by Dold's definition where $T(H, G) = T_{id}^{BH}$ in Dold's notation [D]. The main theorem is a double coset type theorem which generalizes the classical double coset theorem for finite groups [C-E, p. 257]. It is proved for arbitrary compact Lie groups.

2. Main result. Let K|G|H be the double coset space obtained as the orbit space of the left action of K on G/H. This space breaks up into a finite disjoint union of orbit-type manifold components $\{M_i\}$. Let $g_i \in G$ be a representative of M_i . Let $\chi^\#(M_i) = \chi(\overline{M}_i) - \chi(\overline{M}_i - M_i)$ be the internal Euler characteristic of M_i . Then if $H^g = gHg^{-1}$ we have

THEOREM 1 (DOUBLE COSET).

$$\rho^*(K, G) \circ T(H, G) = \sum_i \chi^\#(M_i) T(H^{g_i} \cap K, K) \circ \rho^*(H^{g_i} \cap K, H^{g_i}) \circ Cg_i$$

where the sum is over the orbit-type manifold components of $K\backslash G\backslash H$. Cg: h(BH) $\rightarrow h(BH^g)$ is the cohomology isomorphism induced by the obvious map from BH^g to BH.

This theorem holds where G is a compact Lie group and H and K are arbitrary closed subgroups.

Copyright © 1977, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 55F40.

Key words and phrases. Transfer, classifying spaces, compact Lie group, double coset theorem.

¹Based on a thesis written at Stanford University under the supervision of Professor G. Brumfiel.

Theorem 1 simplifies in special cases, e.g. when it is known that $\chi^{\#}(M_i) = 0$. In particular, the following easily proved result is often useful.

THEOREM 2. Assume $N_G(H)/H$ is not discrete where $N_G(H)$ is the normalizer of H in G. Then T(H, G) = 0.

3. Examples. In the case where G is finite the double coset space K|G|H is discrete. Since $\chi^{\#}(pt.) = 1$ we recover the classical double coset theorem for finite groups.

Among many other corollaries to Theorem 1 we have

THEOREM 3. Let G be a compact Lie group with H any closed subgroup of G. Let K be an arbitrary torus in G. Then

$$\rho^*(K, G) \circ T(H, G) = \sum_{i} \chi^{\#}(M_i) \rho^*(K, H^{g_i}) \circ Cg_i$$

where the sum is over the manifold components of the fixed point set.

THEOREM 4. Let G(n) = U(n), $H(n) = \sum_n U(1)$ the wreath product of the permutation group on n letters \sum_n and U(1). Let K(n) = U(n-1). Then the diagram

$$BH(n-1) \xrightarrow{\pi(n-1)} BH(n)$$

$$\downarrow \qquad \qquad \downarrow$$

$$BU(n-1) \xrightarrow{\rho(n)} BU(n)$$

satisfies the following stability condition

$$\rho^*(n) \circ T(H(n), U(n)) = T(H(n-1), U(n-1)) \circ \pi^*(n-1).$$

A similar formula for the orthogonal groups appears in printed version of a talk by J. C. Becker [B].

THEOREM 5. Let G(n+m)=U(n+m), $H(n+m)=\sum_{n+m} \ \ U(1)$, $K(n,m)=U(n)\times U(m)$. Then the diagram

$$BH(n) \times BH(m) \xrightarrow{\pi} BH(n+m)$$

$$\downarrow \qquad \qquad \downarrow$$

$$BU(n) \times BU(m) \xrightarrow{\rho} BU(n+m)$$

satisfies the following relation

$$\rho^* \circ T(H(n+m), U(n+m)) = T(H(n) \times H(m), U(n) \times U(m)) \circ \pi^*.$$

Both Theorems 4 and 5 are proven by using Theorem 2 to simplify the double coset formula to a single term.

4. Proof. The proof of Theorem 1 is geometric and involves constructing

a K-equivariant deformation of the identity map of G/H by appealing to the covering homotopy theorem of Palais [Br, p. 97]. Elementary properties of the transfer are then used. The proof with minor modifications applies to more general situations.

REFERENCES

- [B] J. C. Becker, Characteristic classes and K-theory (talk).
- [Br] G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972.
- [C-E] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 17, 1040.
- [D] A. Dold, Transfert des points fixes d'une famille continue d'applications, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1291-1293. MR 50 #1231.
- [F] Mark Feshbach, The transfer and compact Lie groups, Thesis, Stanford Univ., 1976.

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60201