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Let SL(n, Z)(p) for H > 2 and p > 3 denote the kernel of the reduction 
modulo p: SL(n,Z) —• SL(n, Zip). The integral homology and cohomology of 
SL(3, Z)(3) have been entirely computed in [1]. On p. 28 the authors make 
a conjecture that would imply that H3(SL(3, Z)(p), Z) <*HX(TISL(3, Z)(p), Z), 
where Tis the Tits building associated to £Z(3,Q), SX(3, Z)(p) acts naturally 
on it, and p is prime. This conjecture is wrong. 

THEOREM 1. There is a natural surjective map 

7/3(SZ,(3, Z)(p), R) —#,(7751(3, Z)(p), R) 0 [Hx(X(p)9 R)]*. 

Here p > 3. X(p) is the closed Riemann surface obtained by adding in the 
cusps to the quotient of the upper half-plane by 5L(2, Z)(p), and k is the num­
ber of orbits of maximal parabolic subgroups of SL(3, Q) under conjugation by 
SL(3, Z)(p). If p is prime, k = p3 - 1. 

Let hl(A) = dim If (A, R). Since the euler characteristic of SL(3, Z) is 0 
(for example, see [2]) and H*(SL(3, Z)(p), R) = 0 by [3], Theorem 1 also 
gives a lower bound on h2(SL(3, Z)(p)). 

My original proof of Theorem 1 was along the lines described below for 
Theorem 2. With the help of A. Borel, we could prove the natural generalization 
of Theorem 1 for arithmetic subgroups of any Q-rank 2 group G. The proof 
involves the manifold with corners M for G, the Leray spectral sequence for 
dM —• Tits building (G), and the vanishing of hl. 

The kernel of the map in Theorem 1 probably contains only classes which 
are in the image of the cohomology with compact supports. This kernel in 
general is nonempty. For instance, 

THEOREM 2. h3(SL(3, Z)(7)) > hx{TjSL{3, Z)(7)) + kh^Xil)) = 5815. 

Similar results could be obtained for other primes. The demonstration of 
this theorem depends upon the following. 

PROPOSITION. Let C be the cone of all n x n positive-definite symmetric 
matrices, A be the set of nonzero integral column vectors, and let K = {x G C: 
taxa > 1 for all a in A}. 
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Let K0 be the union of the compact faces of K. K0 is SL(n, Z)4nvariant under 
the action (g, x) H-> fg x g, g in SL(n, Z), x in C. If Y is any torsion-free sub­
group of finite index of SL(n, Z) and n < 4, K0/r is a deformation retract of 

c/r. 
I do not know if this stays true for n > 5. The proof is similar to methods 

in [4] and [5]. 
The computation of K0 for n = 3 is not difficult given some knowledge 

of 3-dimensional crystallography, and a description of K0 for n = 4 has been 
graciously supplied to me by M. I. Stogrin. See also [6], [7]. 

In K0,1 have an explicit simplicial complex homotopic to C/r. Since C is 
contractible, I can use it to compute //(T). I obtained Theorem 2 by decomposing 
the corresponding chain complex into 5X(3, Z/7)-invariant subspaces and taking 
the euler characteristics of invariant complexes, using [8]. 

For n = 4, this procedure is already too difficult to carry out by hand, 
but I can obtain one result: 

THEOREM 3. If T is as in the proposition above, the images of the 
SZ,(4, Ryinvariant differential forms on 5L(4, R)/50(4, R) are zero in 

H*(T\SL(4,R)lSO(4,R),R), 

thought of as de Rham Cohomology. 

In view of [9], we can call Theorem 3 an "instability result". 

REFERENCES 
1. R. Lee and R. H. Czarba, On the homology and cohomology of congruence sub­

groups, Invent. Math. 33 (1976), 1 5 - 5 3 . 
2. A. Borel and J. -P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 

48 (19^3), 4 3 6 - 4 9 1 . MR 52 #8337. 
3. D. A. Kazdan, Connection of the dual space o f a group with the structure of its 

closed subgroups, Funkcional Anal, i Prilozen 1 (1967), 7 1 - 7 4 . (Russian) MR 35 #288. 
4. A. Ash, D. Mumford, M. Rapoport and Y. Tai, Smooth compactification of 

locally symmetric varieties, Math. Sci. Press, Brookline, Mass., 1975. 
5. A. Ash, Deformation retracts with lowest possible dimensions of arithmetic quo­

tients of self-adjoint homogeneous cones, Math. Ann. 225 (1977), 6 9 - 7 6 . 
6. M. I. Stogrin, Locally quasidensest lattice packings of spheres, Dokl. Akad. Nauk 

SSSR 218 (1974), 6 2 - 6 5 = Soviet Math. Dokl. 15 (1974), 1288-1292. (Russian) MR 50 
#12924. 

7. J. Neubüser, H. Wondratschek and R. Bûlow, On crystallography in higher dimen­
sions. I, II, III, Acta Cryst. A27 (1971), 517-535 . 

8. W. Simpson and J. S. Frame, The character tables for SL(3, q), SU(3, q2), 
PSL(3, q), PSU(3, q2), Canad. J. Math. 25 (1973), 486-494 . MR 49 #398. 

9. A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm Sup 
(4) 7 (1974), 235-272 . MR 52 #8338. 

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, NEW YORK, 
NEW YORK 10027 


