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Let M be a complex manifold and TM the holomorphic tangent bundle
of M. The disc of radius r in C will be denoted by A(r), and A will stand for
A(1). The Kobayashi pseudo-distance dj, and its infinitesimal pseudo-metric Fy,
are defined as follows:
(i) If p,q €EM, then
l 1+ gl

dy(p,q)= inf 21 Tlal

{a;}c a
where the infimum is over all finite sets {g;} C A such that there exist n analytic
mappings f;: A — M for which f,(0) = p, f;(a;) = f;;.,(0) fori=1,n -1, and
fn(a,) =q

(i) If <x, ® € TM, then F);(x, £) = inf 1/R where the infimum is over
all R such that there exists an analytic f: A(R) — M with £,(0, 0/0z1) =
&, .

Royden has shown [5] that dy,; (p, q) = inf,, [, F (0, 6) where the infimum
is over all piecewise smooth curves from p to q.

The manifold M is said to hyperbolic if d,;(p, q) # 0 whenever p # q.

A deformation of M is specified by giving an analytic space § C C¥ and a
family of integrable almost complex structures {¢g|s € S} on M such that ¢, =
0 for some point 0 € S; each g is therefore a C* TM-valued (0, 1) form on M,
satisfying E‘Ps = ¢, ¢s1 /2 = 0. See [2] for details. Using ¢, we can construct
a bundle isomorphism ®;: TM — TM, where TM, is the holomorphic tangent
bundle for the complex structure given by ¢.. Set F M, = F;. Assume that
o = 0, the origin in Ck.

THEOREM A. Given {x, £) € TM and € > 0, there exists a 6 > 0 such that

if Is| <& then F(y,n) < F,(x, £) + €llgll for all {y, n) in a neighborhood of
(x, D&Y in TM. (Here ||&|| is the norm provided by a coordinate system.)

This basic upper semicontinuity result can be improved if F;, is known to
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be continuous on TM; e.g., if F}, is continuous and M is compact, the § can be
chosen to be independent of (x, £).

THEOREM B. If M is compact and hyperbolic, then F (y, n) is continuous

on UseUTMs and dy(p, q) is continuous on U x M x M for U any sufficiently
small neighborhood of o € S.

This theorem follows from Theorem A and the result of R. Brody [1]
that F is lower semicontinuous in s for s sufficiently close to 0 when M is hyper-
bolic.

Using Theorem B and the Kuranishi theory of versal deformations [2], we
obtain the following result about moduli of compact hyperbolic manifolds. See
[3] for a similar result for manifolds with ample canonical bundle.

THEOREM C. Let M be a compact hyperbolic manifold and let M denote
the collection of isomorphism classes of hyperbolic complex structures on the
underlying differentiable manifold of M. Then N has the structure of a Hausdorff
complex space such that if {M}g is any family of hyperbolic complex struc-

tures on M, then the map sending s to the isomorphism class of M is a morphism
from S to M.

Examples of Royden (unpublished) show that F,, is not always lower
semicontinuous on M.

DEFINITION. A projective algebraic manifold M is said to be of general
type if

lim sup —I;HO(M, 0(K™)) > 0.

m—>+ o m

Here K denotes the canonical bundle and dimoM = n. Let n denote the Kobayashi-
Eisenman pseudo-volume for M [4].

THEOREM D. If M is compact algebraic and there exist sections Sy, . . ., Sy
of H® (M, O(K™)) which provide a projective embedding of M such that S:8;/m
is bounded for every i = 0, . . ., k, then Fy; is continuous on TM.

CoRrROLLARY. If M is projective algebraic of general type then Fy, is con-
tinuous on TM.

Proofs and details of the above will appear in [6].
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