CONTINUITY OF THE KOBAYASHI METRIC IN DEFORMATIONS AND FOR ALGEBRAIC MANIFOLDS OF GENERAL TYPE¹

BY MARCUS W. WRIGHT

Communicated by J. A. Wolf, July 26, 1976

Let M be a complex manifold and TM the holomorphic tangent bundle of M. The disc of radius r in C will be denoted by $\Delta(r)$, and Δ will stand for $\Delta(1)$. The Kobayashi pseudo-distance d_M and its infinitesimal pseudo-metric F_M are defined as follows:

(i) If $p, q \in M$, then

$$d_{M}(p,q) = \inf_{\{a_{i}\}\subset\Delta} \frac{1}{2} \sum_{i} \log \frac{1+|a_{i}|}{1-|a_{i}|}$$

where the infimum is over all finite sets $\{a_i\} \subset \Delta$ such that there exist n analytic mappings f_i : $\Delta \longrightarrow M$ for which $f_1(0) = p$, $f_i(a_i) = f_{i+1}(0)$ for i = 1, n-1, and $f_n(a_n) = q$.

(ii) If $\langle x, \xi \rangle \in TM$, then $F_M(x, \xi) = \inf 1/R$ where the infimum is over all R such that there exists an analytic $f: \Delta(R) \longrightarrow M$ with $f_x(0, \partial/\partial z|_0) = \langle x, \xi \rangle$.

Royden has shown [5] that $d_M(p,q) = \inf_{\sigma} \int_{\sigma} F(\sigma,\dot{\sigma})$ where the infimum is over all piecewise smooth curves from p to q.

The manifold M is said to hyperbolic if $d_M(p,q) \neq 0$ whenever $p \neq q$.

A deformation of M is specified by giving an analytic space $S \subset \mathbf{C}^k$ and a family of integrable almost complex structures $\{\varphi_s \mid s \in S\}$ on M such that $\varphi_o = 0$ for some point $o \in S$; each φ_s is therefore a C^∞ TM-valued (0,1) form on M, satisfying $\overline{\partial} \varphi_s - [\varphi_s, \varphi_s]/2 = 0$. See [2] for details. Using φ_s , we can construct a bundle isomorphism $\Phi_s \colon TM \longrightarrow TM_s$, where TM_s is the holomorphic tangent bundle for the complex structure given by φ_s . Set $F_{M_s} = F_s$. Assume that o = 0, the origin in \mathbf{C}^k .

THEOREM A. Given $\langle x, \xi \rangle \in TM$ and $\epsilon > 0$, there exists a $\delta > 0$ such that if $|s| < \delta$ then $F_s(y, \eta) \le F_o(x, \xi) + \epsilon \|\xi\|$ for all $\langle y, \eta \rangle$ in a neighborhood of $\langle x, \Phi_s \xi \rangle$ in TM_s . (Here $\|\xi\|$ is the norm provided by a coordinate system.)

This basic upper semicontinuity result can be improved if ${\cal F}_{\cal M}$ is known to

AMS (MOS) subject classifications (1970). Primary 32H15, 32H20, 32G17, 32G05. $^{\rm 1}$ This work supported in part by NSF Grant MPS-75-05270.

be continuous on TM; e.g., if F_M is continuous and M is compact, the δ can be chosen to be independent of $\langle x, \xi \rangle$.

Theorem B. If M is compact and hyperbolic, then $F_s(y,\eta)$ is continuous on $\bigcup_{s\in U}TM_s$ and $d_s(p,q)$ is continuous on $U\times M\times M$ for U any sufficiently small neighborhood of $o\in S$.

This theorem follows from Theorem A and the result of R. Brody [1] that F_s is lower semicontinuous in s for s sufficiently close to 0 when M is hyperbolic.

Using Theorem B and the Kuranishi theory of versal deformations [2], we obtain the following result about moduli of compact hyperbolic manifolds. See [3] for a similar result for manifolds with ample canonical bundle.

THEOREM C. Let M be a compact hyperbolic manifold and let $\mathbb R$ denote the collection of isomorphism classes of hyperbolic complex structures on the underlying differentiable manifold of M. Then $\mathbb R$ has the structure of a Hausdorff complex space such that if $\{M_s\}_{s\in S}$ is any family of hyperbolic complex structures on M, then the map sending s to the isomorphism class of M_s is a morphism from S to $\mathbb R$.

Examples of Royden (unpublished) show that F_M is not always lower semicontinuous on M.

DEFINITION. A projective algebraic manifold M is said to be of general type if

$$\limsup_{m \to +\infty} \frac{1}{m^n} H^0(M, \mathcal{O}(K^m)) > 0.$$

Here K denotes the canonical bundle and $\dim_{\mathbf{C}} M = n$. Let η denote the Kobayashi-Eisenman pseudo-volume for M [4].

THEOREM D. If M is compact algebraic and there exist sections S_0, \ldots, S_k of H^0 $(M, \mathcal{O}(K^m))$ which provide a projective embedding of M such that $S_i\overline{S_i}/\eta$ is bounded for every $i=0,\ldots,k$, then F_M is continuous on TM.

COROLLARY. If M is projective algebraic of general type then F_{M} is continuous on TM.

Proofs and details of the above will appear in [6].

REFERENCES

- 1. R. Brody, Intrinsic metrics and measures on compact complex manifolds, Thesis, Harvard Univ., 1975.
- 2. M. Kuranishi, Deformations of compact complex manifolds, Séminaire de Mathématiques Supérieures, No. 39 (Été 1969), Univ. of Montréal Press, Montréal, Quebec, 1971. MR 50 # 7588.

- 3. M. S. Narasimhan and R. R. Simha, Manifolds with ample canonical class, Invent. Math. 5 (1968), 120-128. MR 38 # 5253.
- 4. D. A. Pelles (formerly Eisenman), Holomorphic maps which preserve intrinsic measure, J. Math. 97 (1975), 1-15. MR 51 # 3542.
- 5. H. L. Royden, Remarks on the Kobayashi metric, Several Complex Variables. II (Proc. Internat. Conf., Univ. of Maryland 1970), Lecture Notes in Math., vol. 185, Springer-Verlag, Berlin and New York, 1971, pp. 125-137. MR 46 # 3826.
- 6. M. W. Wright, The Kobayashi pseudo-metric on algebraic manifolds of general type and in deformations of complex manifolds, Trans. Amer. Math. Soc. (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, LEXINGTON, KENTUCKY 40506