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Our discussion centers around the striking properties displayed by the range 
of a vector-valued measure. Let 2 be a a-field of sets, X be a Banach space and 
F: 2 —• X be a countably additive map (a vector measure). Bartle, Dunford and 
Schwartz [3] showed that F(2) is relatively weakly compact; Liapounov [13] 
(see also Lindenstrauss [14]) showed that if X is finite dimensional then F(X) is 
compact and, if F has no atoms, convex. Some additional peculiarities: Each 
extreme point of the closed convex hull of F(Z), co(F(2)), lies in F(S) [12]. 
Each extreme point of the closed convex hull of F(L) is a denting point of 
co(F(S)) [1]. The exposed points of co(F(S)) are strongly exposed [1] and a 
point x G cô(F(2)) is exposed by x* E X* (the dual of X) if and only if F is 
lx*Fl -continuous. While any two dimensional unit ball is the range of a vector 
measure, the unit ball of an /* (1 < p < 2) is not ([4] , [7] ). Kluvanek [10] 
has noted that as a consequence of a classical theorem of Banach [8] the unit 
ball of l2 is the range of a vector measure; he [11] has also obtained a character­
ization of the range of vector measures. The closed unit ball of Lp (or lp) for 
1 < p < 2 is not the range of a vector measure. Since this last assertion seems 
not to be easily deducible from Kluvanek's characterization, a few remarks on its 
proof are in order: Note that if the ball of X is the range of a vector measure 
F then X is the quotient via integration of the Banach space BÇL) of bounded 
S measurable functions—a C(K) space. If X is also a subspace of some L% space 
then Grothendieck's inequality [15] implies X is isomorphic to a Hubert space. 
Since L [0, 1] is isomorphic to a subspace of Lx [0, 1] by [5] but is not iso­
morphic to any Hubert space [2] our original assertion follows. 

Our main result is built upon the beautiful paper of Szlenk [16] and using 
his methods we have the 

THEOREM. Every sequence in the range of a vector measure has a subse­

quence whose arithmetic means are norm convergent. 

OUTLINE OF PROOF. Key to the proof is the fact proved by Bartle, Dunford 
and Schwartz [3] that there exists a probability measure /! on S with the same 
null sets as F. Look at a sequence (F(En)) chosen from the range of the vector 
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measure F\ there exists a sequence (xm) in X* such that for each x in the closed 
linear span of {F(En)}, llxll = supm{ lx* (*)!}, where lb* II = 1 for all m. For 
each n, let Fn\ X —» X be defined by F„(,4) = F(£n n A). Each F„ is an X-

valued countably additive jit-continuous measure. Moreover, the family {xmFn : 
m, n = 1, 2, . . . } is uniformly absolutely continuous with respect to fx and so 
by the Radon-Nikodym Theorem this family can be viewed as a uniformly inte-
grable bounded subset of L^p). Given any increasing sequence (nk) of positive 
integers, it is easily established that 

~ £ nEn*)-), Z F(Enk) :SUP„ I Z *mFnk ~ \ Z Xm Fnk 

^l (M) ' 

From this it is easy to mimic the closing steps (Lemma 2 and Theorem) of 
Szlenk [16] to obtain the desired conclusion. 

COROLLARY. A weakly compact order interval in a Banach lattice is the 

range of a vector measure, consequently it has the Banach-Saks property. 

PROOF. If <0, x) is an order interval, then the gauge II IIx of <-*, x) is a 
lattice norm on the linear span Lx of (-x, JC>. The completion C of (Lx, II 11̂ ) 
is an M-space with unit and so is a C(AT)-space by Kakutani's representation theo­
rem [9]. If <0, x) is weakly compact, the canonical inclusion of (Lx, II llx) into 
X extends to a weakly compact linear operator from C to X which takes the non-
negative members of the unit ball of C onto <0, x). It is a well-known fact that 
<0, x) is the closed convex hull of the range of the representing vector measure 
for this extension of the inclusion map (Bartle, Dunford and Schwartz [3]). We 
now apply the observation of Kluvanek and Knowles [12, Chapter 5, §5] to 
complete the proof. 
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