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ABSTRACT. The main result is a theorem on stability of index under small 
perturbations in locally convex spaces, which reduces for Banach spaces to 
the familiar theorem of T. Kato. 

It is a well-known result of Gohberg and Kreïn [2] and Kato [3] that if T 
is a semi-Fredholm operator and P a bounded operator of norm small enough, 
then T + P is a semi-Fredholm operator with the same index as T. Kato gives 
a precise upper bound of the norm of P: \\P\\ < 7(7) , where y(T) essentially is 

^ i i ^ \\T || , T being the one-to-one operator induced by T. In geometric terms, 
this may be expressed as TB D X#' n R(T), PB C 0 and 0 < M < X, B, B1 

being the unit balls of E, F. 
Some results concerning small bounded perturbations of ^-operators in 

more general locally convex spaces are given in [7], [4], but they do not fully 
render the precise Kato theorem in case of Banach spaces. 

By using Kato's theorem in the dual, we obtain some results (Propositions 1 
and 3) which do constitute an extension of Kato's theorem on small perturbations 
of ^-operators,and refine several results in [7], [4]. 

In the sequel, E, F always denote two Hausdorff locally convex spaces, and 
Ty P two (linear) operators from E into F such that [D(T)] ~ C D(P)9 [D(T)] ~ 
being the closure of the domain of 7*. Let N(T) and R(T) denote the kernel and 
the range of T. By neighborhood we mean an absolutely convex neighborhood 
of the origin. A disk is an absolutely convex set. 

The operator T is open (resp. almost open) if TU (resp. [TU] ") is a 
neighborhood in R(T), for any neighborhood U C E. T is a <ï>_ (resp. 3>+)-
operator if 7is open, has a closed graph (in E x F) and a closed range, and 
codim R(T) < °° (resp. dim N(T) < <*>). The index of T is then defined as 
ind(7) = dim N(T) - codim R{T) (we do not distinguish between different 
cardinalities of infinity). 

PROPOSITION 1. Let T be an almost open operator with codim [R{T)] ~~ 
< °°, and P a continuous operator. 

(1) Assume that there exists a base of neighborhoods U in E such that 
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PUn [R(T)]~ Ce[TU]~,0<e< 1. 
(2) Assume further that for some neighborhood U0 C E, there are bounded 

disks B, B' such that PU0 C [TB] ~ + &. 
Then T 4- P is almost open and codim [R(T 4- P)] " < codim[R(T)] ". 

If E is a Fréchet space, or, more generally, fully complete [6], and T has a 
closed graph, then T and T + P are ^-operators and md(T 4- P) = ind(7). 

COROLLARY 2. Conditions (1) and (2) are satisfied, and Proposition 1 
holds true if there exist a neighborhood U0, a bounded disk B and 0 < e < 1 
such that B C eU0, PU0 n [R(T)]~ C [TB]" andPU0 is bounded. 

The proof of Proposition 1 uses duality and Kato's theorem applied to 
the Banach spaces generated by closed equicontinuous sets, and is very much 
similar to those in [4]. Some technical modifications lead to the following more 
general formulation: 

PROPOSITION 3. Let T be an almost open operator with codim [R(T)] ~ 
< °° and P a continuous operator. 

(l') Assume that there is a base of neighborhoods U in E such that for any 
U EL l\, there exist a finite-dimensional subspace N C [/£(7)] "", and 0 < e < 1, 
for which PU n [R(T)] ~ C e[TU] ~ + N. 

(2') Assume further that for some neighborhood U0 C E, a finite-
dimensional subspace N0, and bounded disks B, B1, PU0 C [TB] 4- Bf 4- N0. 

Then T + P is almost open and 

codim [R(T + P)] ~ < codim [R(T)] " + dim(N 4- W0) < <*>. 

If E is fully complete, and T has a closed graph, then T + P and T are 
$„-operators and ind(r 4- P) = ind(7). 

COROLLARY 4. Condition (l') is satisfied if there exist a neighborhood 
U CE, a bounded disk B0, a precompact disk K, a finite-dimensional subspace 
Y and 0 < e < 1 such that B0 C eU and PU O [R(T)] - C [TB0] - +K + N'. 

Both conditions (l') and (2') are satisfied in particular if PU C [TB0] ~~ 4 
K+N'. 

If PU C [TB0] - 4- N' then [R(T 4- P)] ~ 4- N' = [R(T)] ~ + N'. 

REMARKS, Again, by application of a result of Kato in the dual, it could 
be shown that codim [R(T + XP)] ~ is constant for IX | ¥= 0 and small enough. 

Corollary 4 yields at the same time Theorem 4.b, and the remarks 
following Theorems 2 and 4 in [7], where the perturbations are of the type 
PU C [TB0] - + N' and PU C [TB0] " + K (K compact). It also provides 
another short proof of the main part of Theorem 2 in [8] (see also [5] ), and 
shows that precompact perturbations of <3>_-operators may be reduced to small 
perturbations. 



898 LE QUANG CHU 

We would like also to point out that duality is a convenient tool to study the 
stability of "almost-openness" of 4>+ and 4>_-operators under small or precompact 
perturbations. The stability of the index is readily obtained when suitable 
assumptions of completeness are placed on the spaces in such a way that the 
perturbed operator becomes a <£+ or ^>_-operator. 
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