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1. Introduction. For definitions and notation in what follows, see [4] and 
[5]. If A is an infinite set and <p(y t • • • yn, R, Yt • • • Ym) = <p(y, R, Y) is a 
second order relation on A, we call \p operative if R is w-ary. For such a <p let 

4= U^U^fy.^kb:^ F)e^U $\'7)\ and ƒ, - Ul}. 

If F is a collection of second order relations (for simplicity collection of opera­
tors) on A, then F-IND2 is the class of all second order relations of the form 
\jj(x, 7) o I (a, x, F), for some operative <p(â, x, R, Y) in F and constants AT 
from A. As in [5] F-IND is the class of all relations on A which are in F-IND2. 
We let F m o n be the collection of all operative <p(y, R, Y) in F which are mono­
tone on R and we put ~ 1 F = { " 1 ^ ^ € F } . A collection of operators F on >1 is 
adequate if it contains all the IlJ(C) second order relations, where C is a coding 
scheme on A and is closed under A, V, 3A and trivial combinatorial substitu­
tions. Let WF(S) o S be a well-founded relation on^4 *> "1 la0axa2 ' ' * 
V/(0.+ 1 , 0 . ) e & 

THEOREM 1. Let F be an adequate collection of operators on an infinite 
set A. IfWFelfandl F C Fmon-IND2, then F-IND2 = Fmon-IND2. 

2. Elementary induction. Let EL be the collection of all the elementary 
second order relations on a structure A = (A, Rx . . . Rt) and let EL+ be the 
subcollection of ELmon consisting of all operative <p(x, R, Y) which are defin­
able by positive in R elementary formulas. One usually writes EL+-IND2 = 
IND2 and EL+-IND = IND. Clearly IND2 C ELmon-IND2 C EL-IND2 and it 
is well known that IND2 is a tiny part of EL-IND2 for (say) almost acceptable 
A's. By a basic result of Kleene and Spector for co and Barwise-Gandy-Moschova-
kis in general (see [4, §8A]), on every countable almost acceptable structure, 
IND2 = ELmon-IND2 (= n{). On the other hand, letting WFn{S) o S is a 
2n-ary relation on A which is well founded (viewed as binary on An), we have 

COROLLARY 1. Let A be an infinite structure such that each WFn is 
elementary. Then ELmon-IND2 = EL-IND2. 
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A more detailed level-by-level version of Corollary 1 is the following, where 
we just write 2 ^ , n^ instead of 2)^(C), n^(C), where C is a hyperelementary 
coding scheme on A. 

COROLLARY 2. Let A be an almost acceptable structure. Ifm>2 and 
WF e Il0

m, then for all n>m, E^-IND2 = (S^)mon-IND2. 

So, for example, in the structure of analysis R this says that 2* monotone 
operators on R inductively define the same relations as arbitrary 2* operators, 
when n>2. Similarly for 2*. The following rather curious result can be also 
established by the methods used to prove Theorem 1. If A = C4, Rx • • • Rt) is 
a structure, by an elementary quantifier Q on A we understand a quantifier on 
A which viewed as a second-order relation is elementary. 

THEOREM 2. Let A be an acceptable structure in which WF is elementary. 
There is an elementary quantifier Q on A such that for every inductive relation 
R on A, there is an inductive relation R* on A such that "1 R(x) *> QyR*(x, y). 

This should be compared with a result of Moschovakis [3] in higher type 
recursion, where "inductive" is replaced by "semirecursive in a total object of 
type > 3 " and Q becomes the existential quantifier (on an appropriate space). 

REMARKS, (i) We conjecture that in Theorem 1 (and correspondingly in 
Corollary 1) the hypothesis WF G "1 F can be weakened to WF E ~l(Fmon-IND2). 
(ii) In a direction opposite to that of Corollary 1 one has the following theorem 
of Nyberg (unpublished): Let A be almost acceptable. If IND £ - (ELmon-IND), 
then ELmon-IND = IND. Thus for most structures occuring in practice, 
EImon-IND is either IND or EHND. 

3. Further corollaries and applications to Spector classes. An immediate 
consequence of Theorem 1 is also the following result of Harrington and Moscho­
vakis [2]. (Given a structure A and a quantifier Q on A we abbreviate by Q-IND 
the class of second order relations which are positive I/*(Q)-inductive (see [4, 
p. 49]). 

COROLLARY 3. {Harrington-Moschovakis [2] ). Let A be an almost 
acceptable structure and let Q be a quantifier on A. If F = "1 (Ö-IND2), then F-
IND2 = Fmon-IND2. 

This generalizes a result of Grilliot to the effect that over co, E J-IND2 = 
(2})mon-IND2. The original proof of Corollary 2 in [2] yields the stronger 
statement that for F = "1 (Ö-IND2), F-IND2 = Fpos-IND2 and also shows that 
F-IND2 = Ö+-IND2, where Q+ is the next quantifier of Q (see [1]). Turning 
now to Spector classes we can obtain the following, where the notions involved 
are explained in [5]. 

THEOREM 3. Let F be a Spector class on A, and let F be a reasonable, 
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nonmonotone class of operators on A closed under 3A. If WF E "1 F, then Y is 

V-compact iff Y is V£oxv-compact, where F m o n = {<p(K): <P e F, ^ monotone}. 

In particular if F is typical, nonmonotone, Fmon-IND is a Spector class iff 

Fmon-IND = F-IND. 

Further applications of the methods developed here to the theory of "sec­
ond order" Spector classes as well as details and proofs of the results announced 
here will appear elsewhere. 
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