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Methods of numerical mathematics, by G. I. Marchuk (Translated by J. 
Ruzicka), Applications of Mathematics, vol. 2, Springer-Verlag, New York, 
Heidelberg, Berlin, 1975, xii + 316 pp., $29.80. 

The path leading from a mathematical continuum description of a scientific 
process, to a specific verifiable description or prediction of the results, can 
take unexpected and frustrating turns. The simplistic "put it on the com­
puter" often surprises the proposer with an outcome of wildly gyrating 
numbers; but, less dramatically, the computer output may lack accurate 
detail, violate physical principles, and require many hours of expensive 
computer time to generate. That numerical mathematics is still not always 
able to cope satisfactorily with partial differential equations is due, in part, to 
the lack of recognition by many mathematicians that partial difference 
equations are at least as interesting and difficult as the differential equations 
they model. 

On a mathematical level, difficulties with difference equations reflect the 
gap between discrete and continuous mathematics. For example, the Hille-
Yosida-Phillips theorem says that if U is a closed, densely defined operator, 
then there exists a constant M such that ||exp(t//)|| < M for t > 0 if and only 
if ||(A - Uy\\ < M\~r for A > 0, r = 1,2, For a bounded operator A 
on a Banach space, it is easy to show that \\Ar\\ < M implies ||(X - A)~r\\ < 
M(|X| — l)~ r for |X| > 1, r = 1, 2, . . . . However, it is not known (even for 
matrices) whether or not the resolvent inequality implies the existence of a 
constant N, depending only on M, such that | |^ r | | < N, r = 1, 2, . . . (see A. 
Gibson, A discrete Hille-Yosida-Phillips Theorem, J. Math. Anal. Appl. 39 
(1972), 771-792, for some results on this problem). This result (true or false) is 
related to the stability theory of linear difference equations; the nonlinear 
theory has many deep, open questions: for example, does any commonly used 
difference approximation to the gas dynamics equations converge to a physi­
cally correct weak solution? 

On a computational level, difficulties with difference equations could be 
blamed on the existence of many consistent difference schemes corresponding 
to a given partial differential equation. How is one to make a rational choice? 
Constraints on accuracy and efficiency are usually incompatible, mutually as 
well as with imposed physical conservation laws. There is as yet no unique 
best method for a given problem in mathematical physics. In the last section 
of the book being reviewed the author points out that "The optimization of 
numerical processes is presently, without any doubt, one of the central 
problems of computational sciences; it stimulates exploration of few numeri­
cal algorithms and methods of their realizations." 

This very complex question of optimization is not attacked in Marchuk's 
book. Instead, "this book is primarily intended for the benefit of those 
encountering truly complicated problems of mathematical physics for the first 
time, who may seek help regarding rational approaches to their solution". 
Those encountering such problems will be helped by this book. I found it 
readable, with an excellent bibliography for those who wish to go more 
deeply into the subject, which is not all of numerical analysis, as the title 
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indicates, but primarily numerical methods for partial differential equations. 
Modern methods, for example, finite elements, fast Fourier transform, and 
the method of large particles (particle-in-cell method) are discussed or men­
tioned, while a large part of the book is devoted to the powerful splitting-up 
method. This method is based on the formal relations 

e(Al+A2)M== eA^teA2At + 0 (faf 

and 

e(Aï+A2)At= eAlAt/2eA2At/2eA2àt/2eAlàt/2 + Q (faX* 

which permit the problem ut = (Ax + A2)u to be solved as a sequence of 
simpler problems. 

I do find one fault with this book. It paints too rosy a picture of 
computational physics. Only the most serendipitous practitioner will be able 
to use successfully some of the recommended methods on complicated 
problems. A better balance would have resulted with the inclusion of a 
chapter on ways of analyzing the effectiveness of a scheme; phase error 
analysis, operation counts, long-time stability properties, and detailed trunca­
tion error analysis. Such a chapter might also have included some numerical 
results to show the bad answers that some apparently good methods can 
produce. 
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Funktionalanalysis, by Harro Heuser, Mathematische Leitfàden, B. G. 
Teubner, Stuttgart, 1975, 416 pp., 

Geometric functional analysis and its applications, by Richard B. Holmes, 
Graduate Texts in Mathematics, No. 24, Springer-Verlag, New York, 
Heidelberg, Berlin, 1975, x + 246 pp., $16.80. 

Functional analysis, by Michael Reed and Barry Simon, Methods of modem 
mathematical physics, vol. I, Academic Press, New York and London, 1972, 
xvii + 325 pp., $13.50. 

Methods of modern mathematical physics, vol. II, Fourier analysis, self-adjoint-
ness, by Michael Reed and Barry Simon, Academic Press, New York, 1975, 
xv + 361 pp., $24.50. 

These are three quite different introductions to functional analysis, 
addressed to different constituencies; all three are intended for use as 
graduate level textbooks, with varying demands on the reader's mathematical 
background. Heuser's book is appropriate for general mathematics students 
as well as future specialists. Holmes' book stresses Banach spaces and 
applications to optimization theory. Reed and Simon's series (apparently 
projected for at least five volumes) is an exposition of functional-analytic 
methods in modern mathematical physics. In different ways, these books are 
all written admirably, but I confess that for sheer craftsmanship and peda­
gogical judgement, my heart belongs to Heuser. 


