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It is well known, since Weierstrass, that there are continuous functions 
that are not derivable at any point. The same is true for the various known 
generalizations of derivative, e.g. the unilateral, approximate and the symmetric 
derivatives. The present announcement deals with a new definition of derivative 
in terms of which every continuous function ƒ is derivable at a c-dense set of 
points (viz. the set meets every interval in a set whose power is c), and the prop­
erties of ƒ can be investigated in terms of the values of its new derivative wher­
ever it exists. 

Let ƒ : R —> R, where R denotes the set of real numbers. Let ƒ be called 
upper derivable at a point x G R if D*f(x) < D_f(x), and then an extended 
real number a is called an upper derivative of ƒ at x if D+f(x) < a < D_f(x). 

Defining ƒ to be lower derivable at x if - ƒ is upper derivable at x, it is clear that 
ƒ is derivable at x if and only if it is upper and lower derivable there. These def­
initions can be easily extended to real-valued functions on any real topological 
vector space. 

What is unusual about the upper and lower derivatives is that they are not 
unique like the derivative; consider e.g. f(x) = \x\ at JC = 0. They are, however, 
unique at all but a countable set of points. Also, if ƒ is nonangular, viz. D__f < 
D+f and D+ f < D~~f everywhere, then the upper or lower derivative of ƒ is unique 
at every point where it exists. Such functions, in fact, form a residual set in the 
space C[0, 1] with the uniform norm. 

If ƒ has a finite upper derivative at a point x, it is clearly upper semicontin-
uous at x. Every u.s.c. function f on the other hand, has a finite upper deriva­
tive at a dense set of points, and this set becomes c-dense when ƒ is nonangular. 
With the help of an analogue [1] of the Denjoy-Young-Saks theorem, we prove 

THEOREM 1. If f is continuous, then for almost every value of y in R, 
the level f~l(y) contains two dense sets of points where f has unique upper and 
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lower derivatives. Consequently, ƒ has unique upper and lower derivatives at two 
c-dense sets of points on each of which f assumes almost all of its values at least 
once. 

The Besicovitch function, which is nowhere right or left derivable, is upper 
and lower derivable at two metrically dense sets of points covering together al­
most all the points of the domain. 

THEOREM 2. An u.s.c. function f is nondecreasing whenever one of the 

following holds: (a) ƒ has nowhere a finite upper derivative < 0; (b) ƒ is nonangu-

lar and the set of points where f has a finite upper derivative < 0 has power <c, 

(c) Df > 0 at a dense set of points and ƒ has nowhere a zero upper derivative. 

THEOREM 3. A function f is nondecreasing if and only if f(x - 0) < 
fix) ^ fix + 0) at every point x, the upper derivative of f is > 0 at almost 

every point where it exists, and the points where f has a unique upper derivative 

-°° form a set whose power is < c. 

The last two theorems are clearly not possible for the ordinary, unilateral, 
approximate and symmetric derivatives. They yield sufficient conditions in terms 
of the upper derivative for a function to be constant or Lipschitz. There exist 
other similar results, leading in turn to results on the upper derivative of nowhere 
monotone and singular functions. Following is a strengthened form of the Gold-
owski-Tonelli theorem: 

THEOREM 4. Suppose f is of Baire class 1 and f(x - 0) < fix) < 
ƒ ix 4- 0) at every point x. If f is upper derivable at all but a countable set of 
points and the ordinary derivative of f is > 0 at almost all of the points where 
it exists, then f is nondecreasing. 

When ƒ is upper derivable at x, let fuix) denote the set of upper derivatives 
of ƒ at x which is clearly a connected closed subset of the space R of extended 
real numbers. 

THEOREM 5. If two functions f and g have a pair of upper derivatives at 

x whose sum exists, then f + g is upper derivable at x and f'u(x) 4- gu(x) C 
(f + g)f

u(x). Identity holds when f or g has a finite derivative at x, or when the 

upper derivative of f -\- g at x is unique iwhich is true at all but a countable set 

of points). 

A similar result holds for the product of ƒ and g, only the signs of f(x) and 
gix) need to be taken into account. The chain rule also works out if one of the 
two functions has a nonzero finite derivative^ at the point in question. Relative 
to the exponential topology on the space 2R of closed subsets of R, we have 
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THEOREM 6. The upper derivative of every function f is of Baire class 2 

relative to the set of points where it exists, and it is of Baire class 1 relative to 

the set of points where f is upper semicontinuous and uniquely upper derivable. 

Given a subset E of R, let a function <j>: E —> 2R be said to have the 
Darboux property if for every connected set C in R the set (J {<j)(x): x E E O C} 

is connected in R. 

THEOREM 7. Let f be an u.s.c. function with nowhere an ordinary dis­

continuity from any side, (a) Iff is everywhere upper derivable, then its upper 

derivative has the Darboux and the mean-value properties, and it is an ordinary 

derivative at the points where it is unique and u.s.c. as a set-valued function. 

(b) Iff is nonangular and upper derivable at all but a countable set of points, then 

the ordinary and upper derivatives of f both possess the Denjoy property relative 

to the sets of points where they exist. 

Thus a finite unique upper derivative is always of Baire class 1, it has the 
Darboux, mean-value and the Denjoy properties, and it is an ordinary derivative 
at the points where it is continuous. 

Let ƒ be called semiderivable at a point x if it is upper or lower derivable at 
x, and then the semiderivative f^(x) of ƒ at x is defined to be the upper or lower 
derivative of ƒ at x. In case ƒ is continuous, Theorems 4, 6 and 7 hold for semi-
derivative in place of the upper derivative. In fact, the semiderivative of a contin­
uous function ƒ possesses the Darboux and the mean-value properties without any 
hypothesis of semiderivability on ƒ. Also, denoting by f£n\x) the nth semideri­
vative of ƒ at JC, we have 

THEOREM 8 (TAYLOR'S FORMULA). If a continuous function f has n 

finite unique continuous semiderivatives on [a, b], then it has an (n + \)th 

semiderivative a at some point in (a, b) such that 

f(b) = fia) + (b -a)f(a) + • • • + ^—-~-ƒ<">(*) + \ / _ a. 
(n + 1)! 
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