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A polynomial 

(1) f(x) = a0x
n + axx

n~l + • • • + * „ (ate Z) 

is said to be "with affect" if the Galois group G* of its splitting field, considered 
as a permutation group on the roots of f(x), is a proper subgroup of the symme
tric group on n letters. The purpose of this note is to give an improved upper 
bound for the number of monic polynomials of degree three with affect. More 
generally, we also give an upper bound for the number of trinomials ƒ of degree 
n for which Gf is a subgroup of the alternating group An on n letters. Details 
will appear elsewhere [6]. 

Previous upper bounds for the number En(N) of monic polynomials of 
degree n with integer coefficients bounded in absolute value by N, which are 
with affect, have been given by van der Waerden [10], Knobloch [5], and 
Gallagher [2]. The best estimate obtained so far for the general case is En(N) 

«C/V^-^logTV given by Gallagher [2]. Van der Waerden [10] has conjectured 
that En(N) <C/V"_1, a bound which does hold for the reducible polynomials if 
n > 3 [10]. Our results are as follows. 

THEOREM 1. For each e > 0, E3(N) < e 7V2 + e . 

THEOREM 2. Let Jk n{N) denote the number of trinomials 

(2) f(x) = axn +bxk +c 

with a, by c G Z and \a\, \b\, \c\ <N, for N> 1, for which Gf is a subgroup of 

An. Then for each e > 0,Jkn(N) <^en N2+€. 

The proofs of these two theorems are similar. It is well known that the 
discriminant Df of (1) has the property that D^GZ [a0, ax, . . . , an]. More
over, if Gf C An9 then Df is the square of a rational integer, i.e. 

(3) Df = z2 (z E Z). 
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In both theorems then, we think of z and the coefficients of ƒ as variables and 

count the number of possible integer solutions of (3). We do this by means of 

the following 

LEMMA. For a fixed integer d ¥= 0, there are <^€ d (Mm)e integer solutions 

(x, y) of 

(4) x2 - dy2 = m 

with |JC|, | j i < I 

This lemma is useful because after some computational manipulation, equa
tions (3), for both the cubic and the trinomial, can be put into form (4). 

We prove this lemma from an estimate for the number of ideal solutions to 
norm equations in number fields. We show that if K is a number field of degree 
nf and m E Z, then the number RK(m) of ideals of K with norm m is given by 

(5) RK(m)<:€m
€, 

for each e > 0. If d ¥= 1, then (4) is a norm form in the quadratic field Q(\Jd). 

By applying (5) and taking into account the units in real quadratic fields, we 
obtain the estimate in the lemma. 

In the course of the proof of Theorem 2, we also give a new proof of the 

following formula. 

TRINOMIAL DISCRIMINANT FORMULA. Let f(x) = axn + bxk 4- c, a ¥= 0, 

n > k > 0. Then the discriminant D* of f(x) is given by 

Df = ( - l)y^n-^an'k-1ck-1(nNaKcN-K + ( - 1 ) ^ " 1 ^ - k^~KkKbN)d 

where d = (n, k), n = Nd, and k = Kd. 

This formula was given previously by Heading [4] and Goodstein [3] in 
the monic case, and by Artin [1], Samuel [8], and Masser [7] for the case a = 
1 and k = 1. Details of our proof will appear in [6]. 
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