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In this note we give a short survey on joint work with K. Behnke; details
will appear in [1] and [2].

Let n, q be positive integers with 2 < g <n and ged(n, g) = 1,m =n — q.
We define elements ¢, , wq, n € GL(2,C) by

$om 0 §2q 0 0 i
¢, = s Y, = n= ’

0 g‘2m ‘ 0 §2_q1 i 0

where i =+/—1 and ¢, = exp(2mi/k). The group G, , C GL(2, C) is generated
by

(@) ¢,,, ¥, n in case m odd,

(b) ¥ .m0 ¢y, in case m even.

G, q has finite order 4mq; G q+1,q 18 the binary dihedral group of order 4q.

G, q actson C? in the usual way; the quotient C2/Gn’ q has precisely one
(normal) complex-analytic singularity. We call it the dihedral singularity of type
D, .- If we expand n/q into the modified continued fraction 4 la Hirzebruch-

Jung,
n/q=b3—1|b4—-°-- Ibr, bp>2,r>4,

it can be characterized by the dual graph of its minimal resolution (cf. [3]):

"o —by b, -b,
>"———‘-.»o, e =P, ()
-2

The equations are calculated by invariant theory. As in the cyclic group case [5],

we put
nfm=a, — 1|a3—~-' — I‘ae_l, a, = 2.

Further set A; =a; + 1,4, =a., €+ 3, and
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746 OSWALD RIEMENSCHNEIDER
s, =1, 55=1, Sepy =AS. —S._y, 3Sese—1,
t,=ay,t3=a, — 1, t,,  =A . —t._y, 3<e<e—1,

r. =mt, — qs,, 2<e<e-—1.

Then we have

THEOREM 1. A minimal set of generators for S, e = C [u, v] Gn,q is
formed by the polynomials

z; = (uv)*™, z, = (uv)re(u2qse + (- l)tevzqse), €=2,...,e

After a (noncanonical) change of variables it is possible to find simple equations.

THEOREM 2. The dihedral singularity of type D, q s (minimally) described
by %(e — 1) (e — 2) equations

a,—1
B=7,G3+22),

a,—2 a -2 a -1
—_ 3 e e €—2 e—1 =
212¢ = 2323 Z,2o° Z.h » €e=4,...,e,

a—2 a -2 a -1 a
— %3 eee Sl€=2 €e—1 2 4 ,%
2pZ¢ Z3 Ze— Ze1 (23 Zy

-1
), €e=4,...,e,

a

Ze-lze+1=ze€’ €=4,...,e—1,

= +171 854272 |, 272 8c_1~1
Z5%e T Zsr1  Zs+2 Ze—2" Ze—1 >

4<5+1<e-1<e—1.

In the case e = 4 these equations are given by the maximal subdeterminants of the
3 x 2-matrix
-1
2 Z Z‘;3
2 z3+ 1z,

This is in accordance with (and proved by) Wahl’s theorem on equations
defining rational singularities [6] .

For the computation of T, the vector space of infinitesimal deformations,
we use Pinkham’s method [4]. In [1] we reduce the problem to the solution
of a (large) system of linear equations and give some examples. A general formu-
la for the dimension of T' will be proved in [2]:

THEOREM 3.

e—1
dim T! = > a. +ec,
€=2



DIHEDRAL SINGULARITIES 747

where
1, e=3,
c=1{2 a3=2,
3, a3=3.

In another forthcoming manuscript we determine the invariants and equa-
tions for all remaining quotient surface singularities.
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