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Introduction. The db complex is well defined on any smooth CR manifold 
M, and once a metric is fixed, so is the complex Laplace-Beltrami operator Db 

on forms of type (p, q). For compact M without boundary, the bb cohomology 
of M may be studied via Ub [6], and thus local smoothness of solutions to Dbu 

= ƒ is important. In its own right, Ub is a prototype of doubly characteristic 
operators. Under suitable convexity conditions on M, Kohn [7] established the 
following subelliptic estimate on (p, q) forms in CQ(M): 

IMI^<C(D^,^) + C'||̂ ||2, 

and in general such estimates imply C°° and Gevrey (Gs, s > 2) hypoellipticity 
locally [3] , [8] , [10] and no more [1]. In the special case of the Heisenberg 
group, Folland and Stein [5] found an explicit fundamental solution which 
gives local analytic hypoellipticity; while, in general, if M is compact, satisfies 
the convexity condition Y(q) of Kohn, and has an invertible Levi form, the 
author proved Db is globally analytic hypoelliptic and so is the 3-Neumann prob
lem (joint work with M. Derridj, cf. [4], [9]). 

In this note we assume Y(q) and the invertibility of the Levi form and 
prove local regularity in all Gevrey classes Gs with s > 1 as well as in a quasi-
analytic class. Full details will appear elsewhere. 

Notations and definitions. The class (^(£1) C C°°(T2), SI open in Rn, is 
defined by the condition that for all K CC £2 there exists a constant Cf K such 
that for any multi-index a, 

sup |Z) a / |<C;^ + 1 L( ia | ) l a l , 
K 

where we assume that the sequence {L(j)} of positive numbers satisfies (1) L(j)/j 
is nondecreasing and (2) L(j + 1 ) / + 1 < CJL(f)} uniformly in ƒ. The second con
dition implies that CL(£l) is closed under differentiation while the first implies 
that the class is preserved under composition. Thus one may speak of CL mani
folds. If, in addition, *EL(j)~l < °°, the class is called non-quasi-analytic (NQA) 
and admits compactly supported functions. Common examples are the Gevrey 
classes GS(£L), obtained by taking L(j) = f. These are NQA if s > 1, while 
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taking s = 1 gives the real analytic class. The class obtained by taking L(j) ~ 

j log ƒ is quasi-analytic, and thus contains no compactly supported functions. 
A smooth manifold M of dimension 2n - 1 is called CR provided (a) 

CT(M)X = Sx 0 S^®FX for all x, S a smooth subbundle of QT(M) of complex 
dimension n ~ 1, orthogonal to S under a smooth Hermitian inner product which 
induces a Riemannian metric on M, and F of complex dimension 1, and (b) if 
Yt, Y2 are local sections of S, so is their commutator [Ylt Y2]. Dp,q{M), the 
space of smooth (p, q) forms on M, is defined to be the space of those smooth 
p+^ji forms on M such that h(tt, . . . , tp + q) = 0 if p of the f's and g of the 
t's have zero projection on S. For i> G Dp,q{M) we define 3ôu to be the pro
jection on Dp'q + 1(M) of du. The db form a complex and we denote by Db: 

Dp,q(M) —> Dp'q(M) the operator 3ô3g + 3^9Ô, where 8^ denotes the formal 
L2 adjoint of bb. When Yv . . . , F ^ j forms a local frame for S and T de
notes a local, nowhere zero, purely imaginary section of F, the matrix c{p given 
by [Yit Yj] = ctjT modulo S ®S, is the Levi form of M. The number of its 
nonzero eigenvalues and its signature in absolute value are independent of the 
choice of Yj and of T. M satisfies Y(q) if ctj has max (q 4- 1, n - q) eigenvalues 
of the same sign or pairs of eigenvalues of opposite signs. M is strictly pseudo-
convex if all eigenvalues are strictly of the same sign. 

Results. 
THEOREM. Let M be a CR manifold of class CL, L satisfying (1) and (2) 

above and non-quasi-analytic, of dimension 2n - 1 with an invertible Levi form 

satisfying Y(q) in an open set £1. Then any u E Dp'q(£l) satisfying Dbu G 
CL(SÏ) is itself in CL(^2). 

PROPOSITION (BOMAN, CF. [2]). The intersection of all CL(f2), L satisfy
ing (1) and (2) and non-quasi-analytic, is the class CL where L'(j) = ƒ log /'. 

COROLLARY. Let M be a CR manifold of the quasi analytic class CL , 
L'Q) — ƒ log ƒ, with invertible Levi form satisfying Y(q). Then any u G Dp,q(£ï), 
£1 open in M, with Ubu G CL (£1), is itself in this class. 

Remarks. It is well known that one need only assume that u G D'(£l) for 
the above results to hold [6], [8]. Also, there is a direct proof of the Corollary 
which obviates the quasi-analyticity of CL and obtains the local result by con
sidering a family of compactly supported functions whose derivatives, up to a 
given order, grow uniformly as if the functions belonged to CL . Families of 
this sort were introduced by Ehrenpreis to localize some real analytic problems; 
while his families fail to satisfy an analogue of (1) above, one may approximate 
CL by families which do. 
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