ON SURFACES OBTAINED FROM QUATERNION ALGEBRAS OVER REAL QUADRATIC FIELDS ${ }^{1}$

BY IRA SHAVEL
Communicated by Hyman Bass, May 9, 1976

Let A be a totally indefinite division quaternion algebra with center $k=$ $\mathbf{Q}(\sqrt{ } d), d>0, O$ a maximal order in A, and $\Gamma(1)=\{\alpha \in \mathcal{O} \mid \nu(\alpha)=1\}$ where ν is the reduced norm from A to k. Fix an isomorphism λ such that $A \otimes_{Q} \mathbf{R} \cong$ $M_{2}(\mathbf{R}) \oplus M_{2}(\mathbf{R})$. Then $\lambda\left(\Gamma(1) \otimes_{Q} 1\right) \subseteq \mathrm{SL}_{2}(\mathbf{R}) \times \mathrm{SL}_{2}(\mathbf{R})$, and $j(\Gamma(1))=$ $\Gamma(1) /($ center $\Gamma(1))$ acts holomorphically and properly discontinuously on $X=H \times$ H, where H is the usual upper half plane. In general, if Γ is any group of holomorphic automorphisms of X acting properly discontinuously and without fixed points, then $\Gamma \backslash X$ is a complex manifold. Since A is division the quotient is compact, and it is known to be a projective algebraic variety. In this note we discuss the numerical invariants and second cohomology group of $U(\Gamma)=\Gamma \backslash H \times H$ where Γ is commensurable with $\Gamma(1)$.
(A) For any algebraic number field F, a quaternion algebra with center F is determined up to isomorphism by a finite set $S(A)$ of prime divisors of F. Denote this algebra by $A(F, S(A))$.

Theorem 1. Assume $h(k)=$ class number of $k=1$. Let $j(\Gamma(1))=$ $\Gamma(1) /\{ \pm 1\}, A=A(k, S(A))$, and let

$$
(\bar{p})
$$

be the Kronecker symbol. $j(\Gamma(1))$ acts on X without fixed points \Leftrightarrow all of the following hold:

$$
\begin{equation*}
\left(\frac{-3}{p}\right)=1 \quad \text { or } \quad\left(\frac{-D}{p}\right)=1 \tag{1}
\end{equation*}
$$

for some $P \in S(A)$, where $p \mathbf{Z}=P \cap \mathbf{Z}$ and $-D^{\prime}$ is the discriminant of the field $\mathbf{Q}(\sqrt{ }-3 d)$.

$$
\begin{equation*}
\left(\frac{-1}{p}\right)=1 \text { or }\left(\frac{-D^{\prime}}{p}\right)=1 \tag{2}
\end{equation*}
$$

for some $P \in S(A)$, where $p \mathbf{Z}=P \cap \mathbf{Z}$ and $-D^{\prime}$ is the discriminant of the field $\mathbf{Q}(\sqrt{ }-d)$.

[^0](3) If $d=5, \exists P \in S(A)$ such that $p \mathbf{Z}=P \cap \mathbf{Z}$ and $p \equiv 1(\bmod 5)$.

Let $A^{X++}=\left\{\alpha \in A^{X} \mid \nu(\alpha)\right.$ is totally positive $\}$ and call such α totally positive. Let $E^{++}=0^{X} \cap A^{X++}$. $\left|j\left(E^{++}\right): j(\Gamma(1))\right|=2$ if ϵ_{k}, the fundamental unit of k greater than 1 , is totally positive, and $\left|j\left(E^{++}\right): j(\Gamma(1))\right|=1$ otherwise.

Theorem 2. Assume $h(k)=1$ and ϵ_{k} is totally positive. $j\left(E^{++}\right)$acts on X without fixed points \Leftrightarrow both of the following hold:
(1) $j(\Gamma(1))$ has no elements of finite order.
(2) $\exists P \in S(A)$ such that P splits in $k\left(\sqrt{ }-\epsilon_{k}\right) / k$.

Consider $B^{++}=\left\{\beta \in A^{X++} \mid \beta O=O \beta\right\}=$ normalizer of $\Gamma(1)$ in A^{X++}. If $h(k)=1$ then the class number of a maximal order in A is also 1 . Therefore every 2 -sided 0 -ideal is principal. The set of all 2 -sided maximal 0 -ideals are in one-to-one correspondence with the prime ideals of O_{k}. Let $P_{i}=\Pi_{i} 0$ correspond to $P_{i}=\pi_{i} \mathrm{O}_{k}$.

Theorem 3. Assume $h(k)=1$. Let ϵ be a fundamental unit of O_{k}. Let $\left\{\pi_{i}\right\}_{i=1,2, \ldots, n}$ correspond to $\left\{\Pi_{i} 0\right\}_{i=1,2, \ldots, n}=S(A)$. For these π_{i} let $\eta\left(i_{1}, i_{2}, \ldots, i_{r}\right)=\pi_{i_{1}} \pi_{i_{2}} \cdots \pi_{i_{r}}$ where $\pi_{i_{s}} \neq \pi_{i_{t}}$ for $s \neq t . j\left(B^{++}\right)$acts on X without fixed points if and only if both of the following hold:
(1) $j\left(E^{++}\right)$has no elements of finite order.
(2) For all totally positive $\eta\left(i_{1}, i_{2}, \ldots, i_{r}\right), \exists P \in S(A)$ such that P splits in $k\left(\sqrt{ }-\eta\left(i_{1}, i_{2}, \ldots, i_{r}\right)\right) / k$, and for all totally positive $\eta\left(i_{1}, i_{2}, \ldots, i_{r}\right) \in(f o r$ some choice of $\epsilon), \quad \exists P \in S(A)$ such that P splits in $k\left(\sqrt{ }-\eta\left(i_{1}, i_{2}, \ldots, i_{r}\right) \epsilon\right) / k$.
(B) Throughout this section Γ is a group commensurable with $j(\Gamma(1))$ acting on X without fixed points. Using a result of Matsushima and Shimura [2] we have

Proposition 1. (1) The Euler characteristic E, the geometric genus p_{g}, and the arithmetic genus p_{a} of $\Gamma \backslash X$ have the following relationship: $E=$ $4\left(p_{g}+1\right)=4 p_{a}$.
(2) The irregularity q is 0 .
(3) Then m th plurigenus $P_{m}=\left(p_{g}+1\right)(2 m-1)^{2}, m \geqslant 2$.

Corollary. $\quad \Gamma \backslash X$ is a surface of general type.
Using the Riemann-Roch theorem we have
Corollary. $\quad c_{1}^{2}=8 p_{g}+8$, where c_{1} is the first Chern class of $\Gamma \backslash X$.
Using a formula of Shimizu [4] for the volume of a fundamental domain for the action of $j(\Gamma(1))$ on X, and the Gauss-Bonnet theorem we obtain

Theorem 4. $E(U(1))$, the Euler characteristic of $j(\Gamma(1)) \backslash X$ is given by

$$
E(U(1))=\frac{B_{d}}{12} \prod_{P \in S(A)}\left(N_{k / Q} P-1\right)
$$

where B_{d} is the generalized Bernoulli number of the numerical character modulo d associated to the field $k=\mathbf{Q}(\sqrt{ } d)$.

For $d \neq 5, B_{d}$ is an integer. With the aid of a computer, James Maiorana has calculated B_{d} for $d<750$.

We have a complete list of surfaces with $p_{g}=0$ and $p_{g}=1$ which come from groups $\Gamma, j(\Gamma(1)) \subseteq \Gamma \subseteq j\left(B^{++}\right)$.
(c) Let $U(1)=j(\Gamma(1)) \backslash X$ be an algebraic variety. $H_{1}(U(1), \mathbf{Z})$ is isomorphic to $H^{2}(U(1), \mathbf{Z})_{\text {torsion }}$ by Poincaré and Pontrjagin duality. Thus

$$
H^{2}(U(1), \mathbf{Z})_{\mathbf{t o r}} \cong j(\Gamma(1)) /[j(\Gamma(1)), j(\Gamma(1))] \cong \Gamma(1) /\{ \pm 1\}[\Gamma(1), \Gamma(1)]
$$

By constructing a normal subgroup of $\Gamma(1)$ containing $[\Gamma(1), \Gamma(1)]$, we obtain
Theorem 5. Let $j(\Gamma(1))$ act on X without fixed points. Then $\left|H^{2}(U(1), \mathbf{Z})_{\text {tor }}\right|$ is divisible by a $b \cdot c \cdot \Pi_{P \in S(A)}\left(N_{k / Q} P+1\right)$ where
$a=\left\{\begin{array}{l}1 / 2 \quad \text { if } N_{k / Q} P \equiv 1(\bmod 4) \text { for some } P \in S(A), \\ 1 \quad \text { otherwise } ;\end{array}\right.$
$b= \begin{cases}4 & \text { if } \exists P, Q \text { such that } P \neq Q, P Q=2 \mathbf{Z} \text { and } P, Q \notin S(A), \\ 2 & \text { if } \exists P, Q \text { such that } P Q=2 \mathbf{Z} \text { and } P \notin S(A) \text { but } Q \in S(A), \text { or if } \exists P \text { such } \\ & \text { that } P^{2}=2 \mathbf{Z} \text { and } P \notin S(A),\end{cases}$
1 otherwise;
$c=\left\{\begin{array}{l}9 \quad \text { if } \exists P, Q \text { such that } P \neq Q, P Q=3 \mathbf{Z} \text { and } P, Q \notin S(A), \\ 3 \quad \text { if } \exists P, Q \text { such that } P Q=3 \mathbf{Z} \text { and } P \notin S(A) \text { but } Q \in S(A), \text { or if } \exists P \text { such } \\ \text { that } P^{2}=3 \mathbf{Z} \text { and } P \notin S(A),\end{array}\right.$
1 otherwise.
Example. Let $A=A\left(\mathbf{Q}\left(\sqrt{ } 5,\left\{P_{5}, P_{31}\right\}\right)\right)$. We have $P_{5}^{2}=5 \mathbf{Z}, N_{k / Q} P_{5}=$ $5, P_{31} P_{31}^{\prime}=31 \mathrm{Z}, N_{k / Q} P_{31}=31, N_{k / Q} P_{2}=4, N_{k / Q} P_{3}=9, \epsilon_{k}=(1+\sqrt{5}) / 2$, $N_{k / Q} \epsilon_{k}=-1$, and $B_{5}=4 / 5 . \quad U(1)=j(\Gamma(1)) \backslash X$ is smooth, $E(U(1))=(1 / 12)$. $(4 / 5)(5-1)(31-1)=8$, so $p_{g}=1$. $\left|H^{2}(U(1), Z)_{\text {tor }}\right|$ is divisible by $(1 / 2)(5+1)(31+1)=96$. There are two subgroups between $j(\Gamma(1))$ and $j\left(B^{++}\right)$ yielding $p_{g}=0$ surfaces. For more examples see [3].
(D) Let K be the canonical line bundle of a surface of the above type. In conjunction with Gordon Jenkins, we have shown that in the case $P_{g}=0,3 K$ is very ample, that is, $3 K$ determines a biholomorphic imbedding into some complex projective space.

Gordon Jenkins [1] has investigated cases where $[k: \mathbf{Q}] \geqslant 3$.

REFERENCES

1. G. Jenkins, Thesis, SUNY at Stony Brook, 1976.
2. Y. Matsushima and G. Shimura, On the cohomology groups attached to certain vector valued differential forms on the product of the upper half planes, Ann. of Math. (2) 78 (1963), 417-449. MR 27 \#5274.
3. I. Shavel, Thesis, SUNY at Stony Brook, 1976.
4. H. Shimizu, On discontinuous groups operating on the product of the upper half planes, Ann. of Math. (2) 77 (1963), 33-71. MR 26 \#2641.

For correction see: H. Shimizu, On zeta functions of quaternion algebras, Ann. of Math. (2) 81 (1965), 166-193. MR 30 \#1998.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, CENTER AT STONY BROOK, STONY BROOK, NEW YORK 11794

[^0]: AMS (MOS) subject classifications (1970). Primary 14J20; Secondary 12A80, 22E40.
 ${ }^{1}$ Partial results of the author's dissertation [3] under M. Kuga.

