THE AMALGAMATED FREE PRODUCT STRUCTURE

OF $GL_2(K[X_1, \ldots, X_n])$

BY DAVID WRIGHT

Communicated by Hyman Bass, May 11, 1976

For any ring R we let $E_2(R)$ be the subgroup of $\operatorname{GL}_2(R)$ generated by elementary matrices. We let $E'_2(R)$ be the subgroup of $\operatorname{GL}_2(R)$ generated by $E_2(R)$ and the invertible diagonal matrices. We denote by $B_2(R)$ the lower triangular subgroup of $\operatorname{GL}_2(R)$.

The following classical theorem is due to Nagao [2].

THEOREM 1. Let K be a field, X an indeterminate. Then

$$\operatorname{GL}_{2}(K[X]) = \operatorname{GL}_{2}(K) *_{B_{2}(K)} B_{2}(K[X]).$$

More generally, we have

THEOREM 2. Let R be an integral domain, and X_1, \ldots, X_n indeterminates. Then

 $E'_{2}(R[X_{1},\ldots,X_{n}]) = E'_{2}(R) *_{B_{2}(R)} B_{2}(R[X_{1},\ldots,X_{n}]).$

(This generalizes Theorem 1, since $E'_2(R) = \operatorname{GL}_2(R)$ if R = K or R = K[X], K a field.)

Now let K be a field, and X_1, \ldots, X_n indeterminates. The group $GL_2(K[X_1, \ldots, X_n]), n > 1$, is more difficult to understand because it is not generated by diagonal and elementary matrices (see [1]). However, the following technical lemmas enable us to describe $GL_2(K[X_1, \ldots, X_n])$ as a certain free product with amalgamation (see Theorem 3 below).

Let G be a group with subgroups A and C such that $G = A *_B^B C$, where $B = A \cap C$. Let I (resp. J) be systems of nontrivial left coset representatives of A (resp. C) modulo B. With respect to these choices, any element of G has a unique normal form (see [2, Chapter I]). Given a subgroup $H \subset G$, we let $A_H = A \cap H$, $B_H = B \cap H$.

LEMMA 1. Suppose there is a retraction $r: G \to A$, and suppose H is a subgroup of G such that $r(H) = A_H$, and such that A_H acts transitively on A/B. Then, letting $C' = C \cap r^{-1}(A_H)$, we have $r^{-1}(A_H) = A_H *_{B_H} C' (\supset H)$.

AMS (MOS) subject classifications (1970). Primary 20H05; Secondary 15A21, 20F55, 13C99. Copyright © 1976, American Mathematical Society

LEMMA 2. Suppose H is a subgroup of G containing A. Let W be the collection of all elements $h \in H$ of the form $h = c_1a_1 \cdots c_{t-1}a_{t-1}c_t$, $t \ge 0$, with $a_1, \ldots, a_{t-1} \in I$, $c_1, \ldots, c_t \in J$, such that $c_1a_1 \cdots c_{s-1}a_{s-1}c_s \notin H$ if s < t. Then W = BW is a subgroup of H. Furthermore, $B = A \cap W$ and $H = A *_B W$. Clearly, $W \supset H \cap C$. The subgroup W is independent of the choices of I and J.

THEOREM 3. Let $R = K[X_1, \ldots, X_n]$ with K a Euclidean domain. Then $GL_2(R)$ is the free product of $E'_2(R)$ with a subgroup $W = W(K)_{(X_1,\ldots,X_n)}$, amalgamated along the intersection $E'_2(R) \cap W = B_2(R)$. The inclusion $B_2(R) \subset W$ is strict unless R is a Euclidean domain.

(As the notation $W = W(K)_{(X_1,...,X_n)}$ suggests, and as the proof will indicate, W canonically depends on the choice and ordering of the variables X_1, \ldots, X_n .)

A complete version of these statements and their proofs will appear later. For now, we sketch the proof of Theorem 3, using Lemmas 1 and 2. For n = 1and K a field, we satisfy the theorem trivially by taking $W = B_2(K[X])$. We will now show that if the theorem holds for a fixed integer $n \ge 1$ when K is a field, then it is true when K is any Euclidean domain. In particular, if $K = F[X_1]$, F a field, then we set $W(F)_{(X_1,...,X_{n+1})} = W(K)_{(X_2,...,X_{n+1})}$, and so the theorem will be proved inductively.

Let K be a Euclidean domain, F its field of fractions, and $R = K[X_1, \ldots, X_n]$; and assume the theorem holds for $F[X_1, \ldots, X_n]$. Upon letting $G = GL_2(F[X_1, \ldots, X_n]); A = GL_2(F); C = W(F)_{(X_1, \ldots, X_n)};$ and $B = B_2(F)$, we apply our assumption and Theorem 2 to get $G = A *_B C$. We now appeal to Lemma 1, letting $H = GL_2(R)$, and $r: G \rightarrow A$ be induced by setting $X_1 = \cdots = X_n = 0$. Now, $GL_2(K)$ acts transitively on $GL_2(F)/B_2(F)$, and so we get

$$GL_2(R) \subset GL_2(K) *_{B_2(K)} C' = r^{-1}(GL_2(K))$$

where $C' = C \cap r^{-1}(\operatorname{GL}_2(K))$.

Clearly $B_2(R) \subset C' \cap H$. We now apply Lemma 2 with $A = GL_2(K)$; $C = C'; B = B_2(K); G = r^{-1}(GL_2(K))$ (hence $G = A *_B C$); and $H = GL_2(R)$ to get the subgroup $W = W(K)_{(X_1,\dots,X_n)}$ containing $B_2(R)$ such that

$$GL_{2}(R) = GL_{2}(K) *_{B_{2}(K)} W = GL_{2}(K) *_{B_{2}(K)} B_{2}(R) *_{B_{2}(R)} W$$
$$= E'_{2}(R) *_{B_{2}(R)} W.$$

(The last step appeals to Theorem 2.)

REMARK 1. For $H \subset \operatorname{GL}_2(R)$ we let $SH = H \cap \operatorname{SL}_2(R)$. A slight modification of the above proof shows that, for R and W as in Theorem 3, $\operatorname{SL}_2(R) = E_2(R) *_{SB_2(R)} SW$.

REMARK 2. For any ring R we define $GA_2(R)$ to be $Aut_R(R[X, Y])$.

The methods used to prove Theorem 3 also show that $GA_2(K[X_1, \ldots, X_n])$ has a somewhat similar free product decomposition, for K a Euclidean domain.

REFERENCES

1. P. M. Cohn, On the structure of the GL₂ of a ring, Hautes Études Sci. Publ. Math. 30 (1966), 5-53. MR 34 #7670.

2. H. Nagao, On GL(2, K[x]), J. Inst. Polytech. Osaka City Univ. Ser. A 10 (1959), 117-121. MR 22 #5684.

3. J.-P. Serre, Arbres, amalgames, et Sl₂, Collège de France 1968/69, Lecture Notes in Math., Springer-Verlag, Berlin and New York (to appear).

DEPARTMENT OF MATHEMATICS, WASHINGTON UNIVERSITY, ST. LOUIS, MISSOURI 63103