THE AMALGAMATED FREE PRODUCT STRUCTURE OF $\mathrm{GL}_{2}\left(K\left[X_{1}, \ldots, X_{n}\right]\right)$
 BY DAVID WRIGHT

Communicated by Hyman Bass, May 11, 1976

For any ring R we let $E_{2}(R)$ be the subgroup of $\mathrm{GL}_{2}(R)$ generated by elementary matrices. We let $E_{2}^{\prime}(R)$ be the subgroup of $\mathrm{GL}_{2}(R)$ generated by $E_{2}(R)$ and the invertible diagonal matrices. We denote by $B_{2}(R)$ the lower triangular subgroup of $\mathrm{GL}_{2}(R)$.

The following classical theorem is due to Nagao [2].
Theorem 1. Let K be a field, X an indeterminate. Then

$$
\mathrm{GL}_{2}(K[X])=\mathrm{GL}_{2}(K) *_{B_{2}(K)} B_{2}(K[X])
$$

More generally, we have
Theorem 2. Let R be an integral domain, and X_{1}, \ldots, X_{n} indeterminates. Then

$$
E_{2}^{\prime}\left(R\left[X_{1}, \ldots, X_{n}\right]\right)=E_{2}^{\prime}(R) *_{B_{2}(R)} B_{2}\left(R\left[X_{1}, \ldots, X_{n}\right]\right)
$$

(This generalizes Theorem 1 , since $E_{2}^{\prime}(R)=\mathrm{GL}_{2}(R)$ if $R=K$ or $R=$ $K[X], K$ a field.)

Now let K be a field, and X_{1}, \ldots, X_{n} indeterminates. The group $\mathrm{GL}_{2}\left(K\left[X_{1}, \ldots, X_{n}\right]\right), n>1$, is more difficult to understand because it is not generated by diagonal and elementary matrices (see [1]). However, the following technical lemmas enable us to describe $\mathrm{GL}_{2}\left(K\left[X_{1}, \ldots, X_{n}\right]\right)$ as a certain free product with amalgamation (see Theorem 3 below).

Let G be a group with subgroups A and C such that $G=A *{ }_{B} C$, where $B=A \cap C$. Let I (resp. J) be systems of nontrivial left coset representatives of A (resp. C) modulo B. With respect to these choices, any element of G has a unique normal form (see [2, Chapter I]). Given a subgroup $H \subset G$, we let $A_{H}=$ $A \cap H, B_{H}=B \cap H$.

Lemma 1. Suppose there is a retraction $r: G \rightarrow A$, and suppose H is a subgroup of G such that $r(H)=A_{H}$, and such that A_{H} acts transitively on A / B. Then, letting $C^{\prime}=C \cap r^{-1}\left(A_{H}\right)$, we have $r^{-1}\left(A_{H}\right)=A_{H}{ }^{*} B_{H} C^{\prime}(\supset H)$.

[^0]Lemma 2. Suppose H is a subgroup of G containing A. Let W be the collection of all elements $h \in H$ of the form $h=c_{1} a_{1} \cdots c_{t-1} a_{t-1} c_{t}, t \geqslant 0$, with $a_{1}, \ldots, a_{t-1} \in I, c_{1}, \ldots, c_{t} \in J$, such that $c_{1} a_{1} \cdots c_{s-1} a_{s-1} c_{s} \notin H$ if $s<t$. Then $W=B W$ is a subgroup of H. Furthermore, $B=A \cap W$ and $H=$ $A *_{B} W$. Clearly, $W \supset H \cap C$. The subgroup W is independent of the choices of I and J.

Theorem 3. Let $R=K\left[X_{1}, \ldots, X_{n}\right]$ with K a Euclidean domain. Then $\mathrm{GL}_{2}(R)$ is the free product of $E_{2}^{\prime}(R)$ with a subgroup $W=W(K)_{\left(X_{1}, \ldots, X_{n}\right)}$, amalgamated along the intersection $E_{2}^{\prime}(R) \cap W=B_{2}(R)$. The inclusion $B_{2}(R) \subset W$ is strict unless R is a Euclidean domain.
(As the notation $W=W(K)_{\left(X_{1}, \ldots, X_{n}\right)}$ suggests, and as the proof will indicate, W canonically depends on the choice and ordering of the variables X_{1}, \ldots, X_{n}.)

A complete version of these statements and their proofs will appear later.
For now, we sketch the proof of Theorem 3, using Lemmas 1 and 2. For $n=1$ and K a field, we satisfy the theorem trivially by taking $W=B_{2}(K[X])$. We will now show that if the theorem holds for a fixed integer $n \geqslant 1$ when K is a field, then it is true when K is any Euclidean domain. In particular, if $K=F\left[X_{1}\right], F$ a field, then we set $W(F)_{\left(X_{1}, \ldots, X_{n+1}\right)}=W(K)_{\left(X_{2}, \ldots, X_{n+1}\right)}$, and so the theorem will be proved inductively.

Let K be a Euclidean domain, F its field of fractions, and $R=$ $K\left[X_{1}, \ldots, X_{n}\right]$; and assume the theorem holds for $F\left[X_{1}, \ldots, X_{n}\right]$. Upon letting $G=\mathrm{GL}_{2}\left(F\left[X_{1}, \ldots, X_{n}\right]\right) ; A=\mathrm{GL}_{2}(F) ; C=W(F)_{\left(X_{1}, \ldots, X_{n}\right)} ;$ and $B=B_{2}(F)$, we apply our assumption and Theorem 2 to get $G=A *_{B} C$. We now appeal to Lemma 1 , letting $H=\mathrm{GL}_{2}(R)$, and $r: G \longrightarrow A$ be induced by setting $X_{1}=\cdots=X_{n}=$ 0 . Now, $\mathrm{GL}_{2}(K)$ acts transitively on $\mathrm{GL}_{2}(F) / B_{2}(F)$, and so we get

$$
\mathrm{GL}_{2}(R) \subset \mathrm{GL}_{2}(K) *_{B_{2}(K)} C^{\prime}=r^{-1}\left(\mathrm{GL}_{2}(K)\right)
$$

where $C^{\prime}=C \cap r^{-1}\left(\mathrm{GL}_{2}(K)\right)$.
Clearly $B_{2}(R) \subset C^{\prime} \cap H$. We now apply Lemma 2 with $A=\mathrm{GL}_{2}(K)$; $C=C^{\prime} ; B=B_{2}(K) ; G=r^{-1}\left(\mathrm{GL}_{2}(K)\right)$ (hence $\left.G=A{ }_{B} C\right)$; and $H=\mathrm{GL}_{2}(R)$ to get the subgroup $W=W(K)_{\left(X_{1}, \ldots, X_{n}\right)}$ containing $B_{2}(R)$ such that

$$
\begin{aligned}
\mathrm{GL}_{2}(R) & =\mathrm{GL}_{2}(K) *_{B_{2}(K)} W=\mathrm{GL}_{2}(K) *_{B_{2}(K)} B_{2}(R) *_{B_{2}(R)} W \\
& =E_{2}^{\prime}(R) *_{B_{2}(R)} W .
\end{aligned}
$$

(The last step appeals to Theorem 2.)
Remark 1. For $H \subset \mathrm{GL}_{2}(R)$ we let $S H=H \cap \mathrm{SL}_{2}(R)$. A slight modification of the above proof shows that, for R and W as in Theorem 3, $\operatorname{SL}_{2}(R)=E_{2}(R) *_{S B_{2}(R)} S W$.

Remark 2. For any ring R we define $G A_{2}(R)$ to be $\operatorname{Aut}_{R}(R[X, Y])$.

The methods used to prove Theorem 3 also show that $G A_{2}\left(K\left[X_{1}, \ldots, X_{n}\right]\right)$ has a somewhat similar free product decomposition, for K a Euclidean domain.

REFERENCES

1. P. M. Cohn, On the structure of the GL_{2} of a ring, Hautes Etudes Sci. Publ. Math. 30 (1966), 5-53. MR 34 \#7670.
2. H. Nagao, On GL(2, $K[x])$, J. Inst. Polytech. Osaka City Univ. Ser. A 10 (1959), 117-121. MR 22 \#5684.
3. J.-P. Serre, Arbres, amalgames, et $S l_{2}$, Collège de France $1968 / 69$, Lecture Notes in Math., Springer-Verlag, Berlin and New York (to appear).

DEPARTMENT OF MATHEMATICS, WASHINGTON UNIVERSITY, ST. LOUIS, MISSOURI 63103

[^0]: AMS (MOS) subject classifications (1970). Primary 20H05; Secondary 15A21, 20F55, 13 C 99.

