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details of the interaction is called universality and has important con­
sequences both for physics and mathematics, as we now explain. 

A typical correlation length in statistical mechanics might be 103 times the 
atomic spacing. This means that on the distance scale of atomic spacing, 
statistical mechanics is typically near its critical point, hence independent of 
many of the details of the intermolecular forces, hence governed by the 
"general" laws of physics (as opposed to "compound dependent" laws of 
chemistry). 

The significance of universality to mathematics is that it indicates the 
existence of a general theory, whose qualitative (and quantitative) features 
describe a broad range of phenomena. This theory, once completed, might 
belong to the subject of non-Gaussian stochastic processes with index space 
Rd or Zd, d > 2. For example the d = 2 Ising model critical point, seems to 
be related to a theory of random nonoverlapping closed curves in the plane, 
and thus to a two dimensional generalization of the Poisson process. 

Thompson's book is elementary, both in its mathematical and its physical 
content. The reviewer found that it served well as a text for portions of an 
introductory mathematical physics course. It is also a good companion to the 
mathematically more advanced book by Ruelle [1] in providing some of the 
motivation and insight which are valuable to mathematicians working on this 
interdisciplinary field. Chapter 4 is an introduction to phase transitions and 
critical phenomena in terms of simple solvable models such as the van der 
Waals gas and the mean field magnet. Chapters 5 and 6 are the core of the 
book. They present a pleasant account of the exactly solvable two dimen­
sional Ising model as an illustration of phase transitions and critical phenom­
ena, following the method of [2]. Chapter 7 contains an application of the 
Ising model to the role of hemoglobin in the transport of oxygen. 

The Lenard book is at the level of a graduate seminar. There is an excellent 
introductory article by Lanford in this volume which does not require prior 
knowledge of the subject and should be accessible to a graduate student with 
a background in probability and/or functional analysis. The series by Domb 
and Green is also a collection of individual articles. These articles are at the 
level of advanced monographs, but again the opening article by Griffiths 
provides a good general introduction to the subject. 
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Are there applications of algebraic topology? Certainly a subject, conceived 
by Riemann and delivered into the world by Poincaré, ought to have 
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applications. But in mathematics, as in life, the child is often quite unlike the 
parents. Are there applications of modem algebraic topology? The mere 
mention of such a question will elicit, no doubt, strong protest from those who 
would argue that there is no need to justify mathematics. Such arguments are 
based on philosophy; we are intent on practicality. The fact is that there has 
been, in recent years, a concerted effort to associate the word "applied" to 
divers areas of mathematics. Moreover (and this is the crucial point), the 
general public, and to some extent the mathematical public, construes these 
efforts as an apology for mathematics. Whether or not we should ask the 
question is moot. It has been asked and answered. What deserves our attention 
is the answer. 

A glance at the title shows that Lefschetz believed there were indeed 
applications of algebraic topology. However, we ought to emphasize that this 
book is definitely not a philosophical treatise, espousing the virtues of 
applicable mathematics. It is merely an exposition of two applications of 
algebraic topology, written by Lefschetz in his "unique and vigorous style". 
(Those familiar with this style will immediately recognize the euphemism.) 
Yet, Lefschetz did believe there were applications of algebraic topology, and, 
because he was undeniably a master of his subject, his belief will be 
interpreted as a definitive answer. 

It is an answer which needs some clarification. The truth is that any area of 
mathematics has applications if the word "applications" is sufficiently vague. 
What do we mean by applications? This seems to be a difficult question for 
applied mathematicians themselves, since no matter what definition is used 
there always remain some areas of applied mathematics which are not 
applicable. They prefer to be vague. But if we are honest with the public and 
ourselves we will use our words precisely. Since most people equate the 
concepts of applicability and utility, we shall do so here. An application of 
algebraic topology ought to be useful-at least to somebody! 

Now, having accepted the verdict, we can examine the evidence. What are 
the applications of algebraic topology? Lefschetz presents two, which we 
briefly describe. 

Classically, an electrical network is simply a graph, consisting of nodes and 
(directed) branches joining the nodes, together with two functions which 
assign currents and voltages to each of the branches. Of course, the current 
and voltage distributions must satisfy Kirchoff s two laws: that the algebraic 
sum of the currents at each node is zero, and that the algebraic sum of the 
voltages around any loop is zero. From this quite simple idea a very pretty 
theory of networks develops. Lefschetz points out that this theory is merely the 
"first chapter of classical algebraic topology". 

To see this, we need only translate the notions of current and voltage 
distribution into the language of algebraic topology. The graph of a network 
we immediately recognize as a simplicial complex (of dimension 1). If we label 
the branches of the graph as {b) then we can think of a current distribution 
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as a formal linear combination 2 hbp where L is the current assigned to b-. 
The collection of all such formal linear combinations (with real coefficients) is 
a vector space, and we recognize this as Cv the 1-chains of the simplicial 
complex. But which 1-chains satisfy Kirchoffs first law? To see this, we 
consider the 0-chains C0, the vector space of all formal linear combinations of 
the nodes. There is a linear map 3: Cx -> C0 which takes a branch to the 
difference of its endpoints. Now it is easy to verify that a 1-chain satisfies 
Kirchoffs first law precisely when 3(2 Ubj) = 0. In the language of algebraic 
topology, a current distribution is a 1-cycle. We can similarly interpret a 
voltage distribution by considering the dual vector spaces together with the 
dual map 8: C0* -» C*. We view a voltage distribution as a formal linear 
combination 2 ^ b * , where ft* is dual to b- and Vj is the voltage assigned to b-. 
This time we can argue that 2 VjbJ satisfies Kirchoffs second law precisely 
when it is in the image of 5. A voltage distribution is, therefore, a 1-
coboundary. The translation, from the ordinary language of networks to 
algebraic topology, is complete. 

Is this an application of algebraic topology? Is it useful? In fact, Lefshetz 
does use the new language to prove one result, on duality of networks, but the 
result, while mathematically aesthetic, is of doubtful use to the electrical 
engineer. (Perhaps a more serious objection is that the proof can be given 
without the mention of algebraic topology.) Moreover, useful or not, that 
which is applied here is not algebraic topology, but rather the language of 
algebraic topology; and the most elementary language at that. 

One certainly cannot apply such criticism to the second application which 
Lefschetz discusses, to the theory of Feynman integrals. These are integrals 
which arise as coefficients of a perturbation series in quantum field theory, and 
were used by Feynman to describe the elements of the scattering matrix. 
Setting the physical origin aside, we are presented with a very beautiful (and 
difficult) mathematical problem. A Feynman integral is, in general, a multiple 
integral, over real contours, of an integrand which depends on certain complex 
parameters. For fixed values of the parameters the integrand, which is, in 
general, a rational function, will have certain singularities, and naturally the 
real contour must avoid these. The integral then defines a function (multi­
valued) of the parameters. In the modern theory the problem is to find the 
singularities of this function and to determine its analytic nature near these 
singularities. 

We can illustrate this problem with a very simple example. We define a 
function by 

where t is a complex parameter and F is a closed curve in the z-plane. For a 
fixed value of t the integrand has singularities at z = ±\A> and clearly the 
value of F(i) depends on T, in the usual way, but does not change if we deform 
T, avoiding the singularities. Then how can F(t) be singular? Suppose we start 
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at some positive real t and some curve T, and let t approach zero, deforming 
T so as to avoid the singularities. Now as / approaches zero the two 
singularities at z = ±y / / approach one another and coalesce. If our original 
curve r does not "contain" either singularity, then this makes no difference, 
and F{i) is not singular at the origin. But, if the original curve does "contain" 
one of the singularities then as the singularities coalesce, T will be "pinched" 
between them and thus F(t) is singular at the origin. In other words, whether 
or not F{t) has a singularity at / = 0 depends on which "sheet" of F{t) we 
consider. What is the nature of F{i) near a singularity? Again consider a 
positive, real / and let T be a small circle once around +y7 in a clockwise 
direction. Now if t circles once around the origin in the r-plane then the 
singularities z = ± \A circle half-way around in the z-plane; that is, they are 
interchanged. Our original T around +^/t will become a small circle, once 
around —\/t, and it is easy to verify that F(t) changes sign. 

The general problem is similar. What are the singularities? What is the 
nature of the function near the singularities? Of course, in higher dimensions 
there are many difficulties which are not apparent in our simple example. In 
particular, the integrand is now singular on varieties, rather than points, and 
the contours are higher dimensional "cycles", rather than curves. By analogy 
we must determine when these cycles are "pinched" by coalescing singulari­
ties, and how they are affected when the parameters "circle around" a 
singularity. To an algebraic topologist it is not surprising that the answers to 
these questions can be described using homology and cohomology, together 
with the intersection pairing. In fact, the answer is given by a theorem of 
Picard and Lefschetz, which anticipated the work of Feynman by many years. 
The theory, begun by Picard and developed by Lefschetz, has been extended 
and applied in recent years by Fotiadi, Froissart, Lascoux and Pham. It is a 
very pretty subject indeed. 

There have also been some surprises, and I would be remiss in not 
mentioning one in particular. An immediate generalization of our simple 
example above is the integral over a real contour of the function 

( z f + ^ + . - . + z * - / ) - 1 , 

where the exponents are positive integers. As before, we are interested in the 
analytic nature of the function near t = 0, and to this end, we are interested 
in the variety 

V(ax,a29 . . .,an) = {(zl9z2,... , z j | z ? ' + z ? + • • • + za
n» = 0} 

near the origin. Now the intersection of such a variety with a small ball B 
about the origin is just the cone on the intersection of the variety with the 
sphere bounding the ball. The fact is that the closed manifold V(a{ ,a2,-..9an) 
H dB is often homeomorphic to a sphere, but not diffeomorphic to the usual 
sphere. In short, we have examples of "exotic spheres!" It seems remarkable 
that this chain of ideas, as spurious as it is, from particle physics to exotic 
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differentiable structures on spheres, can be outlined in one short paragraph. 
We have now come to a rather troublesome question: Is this an application 

of algebraic topology? Are Feynman integrals useful? Perhaps the pertinent 
question ought to be: Useful to whom? That Feynman integrals, or at least the 
calculations associated to them, are useful to algebraic topologists is certainly 
clear (viz., examples of exotic spheres). That Feynman integrals are useful to 
mathematical physicists is somewhat less clear, since the mathematical tech­
niques used to describe their analytic nature seem to have advanced beyond 
the physicist's ability to interpret these results. This may be a "mathematiza-
tion of physics" that many physicists would rather do without. And whether 
or not they are of use to mathematical physicists, this is not what most people 
mean by useful. It would be incorrect to say that Feynman integrals are 
useless, but it would be misleading to say that they are useful. 

The same can be said for algebraic topology, and if you would argue the 
point, then argue it with a well-educated layman-choose a businessman or 
dean, or perhaps any taxpayer-and be prepared to answer these questions. 
What are the tangible results? If algebraic topology had never been developed 
would there be one less transistor or one more sickness? Would physics or 
chemistry or biology be any different? The answers are obvious. The simple 
truth is that if we use our words with any precision, then algebraic topology 
has no applications. We should not be proud of such a fact; nor should we be 
ashamed. Moreover, it is entirely possible that some day, through the 
proverbial long chain of reasoning, algebraic topology will prove to be useful. 
But if we make the claim that algebraic topology, as presently constituted, has 
utility, then we must expect to eventually incur the wrath and indignation of 
those we have duped. Algebraic topology is simply not useful! 

Then what is the intent of this book by Lefschetz? Should we search for 
applications no matter how feeble the results? There is a superficial appeal to 
such an effort, for mathematics which claims utility as its aim is undeniably 
popular. (Witness the recent public reaction to Thorn's Castastrophe theory, 
although in this case popularity was certainly not the motivation.) Yet the 
conscious search for applications of an area of mathematics has historically 
met with failure. Mathematics seems to yield applications at her own whim. 
To search for applications of a developed subject is not only futile, but also 
will likely produce poor applications and even poorer mathematics. 

"To do mathematics you need a problem". Felix Klein meant more than the 
problem of finding a problem. Mathematicians in general, and algebraic 
topologists in particular, should concentrate on doing mathematics, and 
content themselves with recognizing the applications, even if they are merely 
"applications" to mathematics itself-indeed, especially when they are to 
mathematics itself. Now herein lies the difficulty. All too often the modern 
mathematician tends to be an intellectual bigot, provincial in outlook and 
learning. Perhaps we can no longer be universalists, but neither should we be 
pedants. If we hope to recognize the applications, or even hope to appreciate 
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the beauty and unity of mathematics, we must broaden our perspectives and 
hone our intellectual curiosity. Perhaps algebraic topologists should learn 
some mathematical physics, and mathematical physicists some algebraic 
topology; not because it is useful, but because it is interesting! It seems that 
Lefschetz agreed. 
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Geometry of Banach spaces-Selected topics, by Joseph Diestel, Lecture Notes in 
Mathematics, no. 485, Springer-Verlag, Berlin, Heidelberg, New York, 
1975, xi + 282 pp., $11.50. 

Beginning with Banach's Operations linéaires the study of Banach spaces has 
been a pursuit of classification. This can be in terms of the classically 
important spaces as C(K) or Lp{\i), or it can be in terms of certain desirable 
internal conditions on norm and specified elements such as smoothness and 
convexity properties, or it can be in terms of external conditions, for example, 
on dual spaces, subspaces, or factorization of operators. An elegant example 
of the first is the Bohnenblust-Kakutani result that a Banach lattice is linearly 
isometric to Lp(ii) or a sublattice of C(K) if and only if ||JC 4- y\\p = \\x\\p 

+ \\y\\p or \\x + j>|| = max(||x||, \\y\\) whenever x A y = 0. Smoothness refers 
to the existence of unique supporting hyperplanes to points on the surface of 
the unit ball and is usually phrased in terms of the differentiability of the 
norm. Uniform convexity describes the shape of the surface of the unit ball. 
These concepts are important to minimization problems in optimization 
theory and P.D.E. among others. These conditions are "geometric" in nature 
and are not, in general, preserved under isomorphisms. However, deep studies 
have been made into various Banach space properties which imply smoothness 
or convexity conditions under some equivalent norm. Perhaps the deepest and 
most important of these is the one obtained by P. Enflo which states that a 
Banach space X has an equivalent norm under which it is uniformly convex if 
and only if it is superreflexive (i.e., every Banach space Y which has the 
property that every finite dimensional subspace of Y is almost isometrically 
embeddable into X is itself reflexive). This is an elegant blending of the 
internal geometry (uniform convexity) with the external geometry (superreflex-
ivity). There are many examples of the third type mentioned above. For 
example, the theory of tp spaces (roughly, a Banach space is a tp space if it is 
the union of an upwards directed family of finite dimensional spaces each 
uniformly equivalent to an lp(ri), 1 < p < oo). Thus there is the elegant 
Lindenstrauss-Pelczyhski-Rosenthal result that X is a tp space or a Hubert 
space if and only if it is isomorphic to a complemented subspace of an Lp(ii) 
space, 1 < p < oo. In duality there is the Lindenstrauss-Rosenthal result that 
X is a tp space if and only if X* is a tp> space, 1 < p < oo. In factorization 
of operators, there is the beautiful theorem of Davis, Figil, Johnson and 
Pelczyhski that a weakly compact operator factors through a reflexive space. 
One also has the deeply significant work of many authors (Lindenstrauss, 
Pelczyhski, Nikisin, Stein, Rosenthal, Maurey, and others) on absolutely p-


