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ncontres, Edited by A. Lenard, Springer-Verlag, Berlin, Heidelberg, New 
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Phase transitions and critical phenomena, Edited by C. Domb and M. A. 
Green, Academic Press, London, New York, Vol. 1, Exact results, 1972, 
xv + 506 pp., $31.00. Vol. 2, 1972, xv + 518 pp., $31.00. Vol. 3, Series 
expansion for lattice models, 1974, xviii + 694 pp., $46.50. 

Among the major scientific issues having a mathematical component, there 
are a number for which the process of quantification and model building is 
incomplete (e.g. economics, genetics and ecology). In contrast are issues 
which can be clearly formulated (but not yet solved) in mathematical terms. 
Mathematical physics has a particularly rich collection of this second class of 
problems; we mention the instabilities of plasmas, the singularities of space 
time allowed by Einstein's equations for general relativity, turbulence, the 
renormalization of quantum fields, and the theory of critical behavior in 
statistical mechanics. The importance of these problems to physics is clear. 
Their importance to mathematics lies in the expectation that their solution 
will require new developments in-or perhaps even new branches of-mathe-
matics. 
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Statistical mechanics concerns infinite systems, and the relevant analysis is 
analysis over infinite dimensional spaces. The simplest measure over an 
infinite dimensional space is an infinite tensor product dp = ®£,1rfju/ of 
measures d\xt over finite dimensional spaces (e.g. Rd or ( — 1, +1}). These 
measures exist under the very general hypothesis 

2 |i ~~ ƒ 4̂ 1 < °°-

They are not very interesting because they correspond to situations in which 
there is no interaction between the particles or between the degrees of 
freedom of the problem. However the tensor product measures are not 
completely misleading, because the measures of statistical mechanics typically 
are almost tensor products. 

The essential postulate necessary for statistical behavior is not statistical 
independence. It is statistical almost independence. The probability distribu­
tion diit of the /th particle depends primarily on the positions of a finite 
number of its neighbors (short range stable forces, in physics terminology), 
and depends only very weakly or not at all on the remaining infinite number 
of particles. Thus the proper definition of dp is not the tensor product 
definition l i m ^ ^ ® " = 1 ^ - , but rather d\x is a limit of measures dpü defined 
over finite dimensional spaces (e.g. ff or ( - 1 , + 1}W). dpü is determined by 
the restriction of n particles confined to a region ÏÏ of space, of volume V, and 
the limit V —> oo is called the infinite volume, or thermodynamic limit. For 
many purposes, it is sufficient to study the free energy, defined as 

/ (p ) = lim(ln jd^)/V 

with the density p = n/ V held fixed. The "almost tensor product structure" 
of d[xü is the main hypothesis required for the existence of this limit. 

There is an essential difference in the analysis over finite vs. infinite 
dimensional spaces. The same differences occur in random processes £(f), 
t G R vs. random fields, £(*), x G Rd, d > 2 and in elliptic operators in a 
finite vs. infinite number of degrees of freedom. The difference is that in the 
infinite dimensional case, the solution may depend discontinuously on the 
parameters of the problem. The discontinuity is not an irritating pathology, to 
be removed by an appropriate reformulation. Rather, it is the central and 
dominant feature of the problem. Let /°(p) = (In f dp**)/ V. Then /"(p) turns 
out to be an analytic function of p (and of the temperature, and the other 
parameters contained in the definition of dpü). However ƒ (p) should be only 
piecewise analytic. The boundaries between the analytic pieces of ƒ corre­
spond to the phase transitions for example between gas and liquid or liquid 
and solid states, and thus are important to the structure of d\i. The existence 
of these phase transitions has never been established in realistic models of 
fluids, but it has been established in simplified models of magnetism, such as 
the Ising model. 

In magnetic models, the phase transition is associated with a lack of 
statistical independence between the /th and y th particles at infinite separa­
tion. In the simplest case / G Zd, d\it — (8_x + 8 + 1) /2 (Dirac delta func­
tions). Let 91 (£2) be the set of nearest neighbor pairs (/, /') in £2, i.e. pairs (/, 
/') for which dist(/, /') = 1. Then we define 
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^o = n ek°> n e-j°* n ^ K ) 
/Gfi (i,/')e9l(n) /efi 

with /* real and — / > 0. This case is the Ising model. We differentiate 
between weak coupling (J » 0), and strong coupling { — J » 1), but because 
in both cases only nearest neighbor pairs (/, /') interact, d\iü has an almost 
tensor product structure and the existence of rf/x follows. 

The uniqueness question is much deeper than the existence question and is 
related to jump discontinuities in the derivative of ƒ across the boundaries 
between its analytic pieces. A complete definition of dp® requires a specifica­
tion of the boundary spins 

ai9i ŒdQ = {j: dist(y, £2) = 1 } . 

If the coupling is weak (high temperature) then d\i is independent of 
boundary conditions, and is unique. If the coupling is strong (low tempera­
ture) and d > 2, d does depend on the boundary conditions, for h = 0. 
Furthermore ƒ ( / , h) is real analytic in J and h for h =£ 0 and df/dh has a 
jump discontinuity at h = 0, so that a phase transition occurs for h = 0, 
— / » 1. The connection between phase transition and the dependence of d(x 
on boundary conditions is quite general, and relates to the theory of convex 
functions on infinite dimensional spaces. 

Since dfx is defined by the limit fij^, 3fi -> oo, we see that weak coupling 
leads to (exact) independence of 9 £2 and öf/x, i.e. independence of random 
variables separated by an infinite distance, while strong coupling allows phase 
transition and dependence between random variables separated by an infinite 
distance. The separation distance |/ — j \ is the Euclidean distance between 
the labels /, j G Zd for the degrees of freedom. Thus phase transitions and 
this sharp dichotomy between strong and weak coupling can exist only for 
infinite systems; in finite systems, there is no "infinitely distant separation" 
between the degrees of freedom-i.e. between the coordinate directions in the 
finite dimensional space of variables defining the problem. 

Other mathematical approaches to phase transitions involve ergodic theory 
and spectral theory. In the ergodic theory approach, d\k is decomposed into 
ergodic components relative to the action of the lattice symmetry group. 
These irreducible components are called pure phases, and the possibility of 
more than one pure phase (depending on boundary conditions) corresponds 
to phase transitions. In the spectral theory approach, a distinguished lattice 
direction is selected, and the conditional expectation onto successive normal 
hyperplanes (unit separation) defines an operator jf, called the transfer 
matrix. Degeneracy of the largest eigenvalue of T corresponds to nonergocitiy 
of d\x and hence to phase transitions. In all approaches one finds an interplay 
between functional analysis, complex analysis and combinatorial analysis. 

The critical point concerns the transition from weak to strong coupling. 
More precisely, for the Ising model, the critical value / = Jc of J is defined to 
be the supremum of the / ' s for which the free energy ƒ = ƒ ( / , h) has a jump 
discontinuity (phase transition) at h = 0. In a neighborhood of the critical 
point, / = Jc, h = 0, ƒ cannot be analytic in either h or / , but the leading 
singularities dominate the behavior of ƒ near the critical point. These singular­
ities are expected to be independent of all but a few topological features of 
the interaction (dimension, spin, . . . ). This independence of ƒ from the 
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details of the interaction is called universality and has important con­
sequences both for physics and mathematics, as we now explain. 

A typical correlation length in statistical mechanics might be 103 times the 
atomic spacing. This means that on the distance scale of atomic spacing, 
statistical mechanics is typically near its critical point, hence independent of 
many of the details of the intermolecular forces, hence governed by the 
"general" laws of physics (as opposed to "compound dependent" laws of 
chemistry). 

The significance of universality to mathematics is that it indicates the 
existence of a general theory, whose qualitative (and quantitative) features 
describe a broad range of phenomena. This theory, once completed, might 
belong to the subject of non-Gaussian stochastic processes with index space 
Rd or Zd, d > 2. For example the d = 2 Ising model critical point, seems to 
be related to a theory of random nonoverlapping closed curves in the plane, 
and thus to a two dimensional generalization of the Poisson process. 

Thompson's book is elementary, both in its mathematical and its physical 
content. The reviewer found that it served well as a text for portions of an 
introductory mathematical physics course. It is also a good companion to the 
mathematically more advanced book by Ruelle [1] in providing some of the 
motivation and insight which are valuable to mathematicians working on this 
interdisciplinary field. Chapter 4 is an introduction to phase transitions and 
critical phenomena in terms of simple solvable models such as the van der 
Waals gas and the mean field magnet. Chapters 5 and 6 are the core of the 
book. They present a pleasant account of the exactly solvable two dimen­
sional Ising model as an illustration of phase transitions and critical phenom­
ena, following the method of [2]. Chapter 7 contains an application of the 
Ising model to the role of hemoglobin in the transport of oxygen. 

The Lenard book is at the level of a graduate seminar. There is an excellent 
introductory article by Lanford in this volume which does not require prior 
knowledge of the subject and should be accessible to a graduate student with 
a background in probability and/or functional analysis. The series by Domb 
and Green is also a collection of individual articles. These articles are at the 
level of advanced monographs, but again the opening article by Griffiths 
provides a good general introduction to the subject. 
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Are there applications of algebraic topology? Certainly a subject, conceived 
by Riemann and delivered into the world by Poincaré, ought to have 


