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1. Introduction. The purpose of this note is to present a result concerning 
regularity at the boundary of bounded, weak solutions of equations of the form 

(1) div^4(x, uy ux) = B(x, u, ux) 

where A and B are, respectively, vector and scalar valued Baire functions defined 
on SI x R1 x Rn that satisfy 

\A(pc, u, w)\<a0\w\p^ +ö 1 | t / | " - 1 +a2, 

(2) \B(x, u, w)\ <b0\w\p + bt\w\p~l + b2\u\p~l 4- Z>3, 

w • A(x, u, w) > c0\w\p - cx\u\p - c2. 

Here, £2 is an open subset of Rn, 1 < p < n, c0 > 0, a0 > 0, b0 > 0, and the 
remaining coefficients are nonnegative, measurable functions in the respective 
Lebesgue classes 

cv c2, b2, b3 G Ln/p__6(£l) where 0 < 8 < 1. 

A weak solution of (1) is a function u in the Sobolev space W^(Sl) that satisfies 
f^A - W + B - if = 0 whenever ^ is a smooth function with compact support 
in £2. 

It has been shown in [LU], [S], and [T] that a weak solution of (1) is 
Holder continuous on compact subsets of £2. In connection with boundary regu­
larity, it was established in [LSW] that a point x0 G 3H is regular for solutions 
of linear, uniformly elliptic equations in divergence form with bounded, measur­
able coefficients if and only if x0 is regular for Laplace's equation. Later, 
Stampacchia [ST] extended this result to a wider class of linear elliptic equations. 
For solutions of quasilinear equations of the form divA(x, ux) = 0, but subject 
to conditions more restrictive than (2), Maz'ya [M] established regularity at x0 

E d£l provided the following condition is satisfied: 
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(3) Ç0 [rp(B(x0, r) - nyP-« ] »/(P-t) ± = ee. 

Here B(x0, r) denotes the «-ball of radius r centered at x0 and Fp is a capacity 
defined on all sets E C Rn by 

rp(E) = inf|j|V/|p} 

where the infimum is taken over all ƒ E Lnpun-p) n Wl(Rn) for which E C 
int{x: f(x) > 1}. In view of the fact that T2 is Newtonian capacity, one ob­
serves that (3) is precisely the classical Wiener condition when p = 2. 

2. The main results. Given a continuous function ƒ on d£l and x0 G d£2, 
we will say u(x0) <f(x0) weakly for functions u G Wp(£l) provided that when­
ever 77 is a smooth function supported in B(x0, r) and ƒ < k in B(x0, r) Pi 312, 
then (u - k)+ri G Wx

 0(£2). A similar definition is given for u(x0) >f(x0) 
weakly and, therefore, we can give meaning to u(x0) = / (x 0) weakly. 

As a direct consequence of the gradient estimate below, (5), we obtain the 
following 

THEOREM. Suppose f is a continuous function on d£l and let u G Wl
p(£ï) 

be a bounded weak solution of (1) such that u(x0) = f(x0) weakly. If (3) holds 

and 

then timx_>Xo.x(Eau(x) = f(x0). 

The notation in (4) indicates the norm of ax + a2 taken relative to the n-

ball B(x0, r). Of course, if it is assumed that av a2 G Lq where q > n/(p - 1), 
then clearly (4) is satisfied. 

It is interesting to observe that the regularity results of [LSW], [ST], and 
[M] are obtained by employing potential-theoretic techniques, whereas ours is 
based primarily on information obtained from the differential equation itself. 
Indeed, the following estimate is the vital component. 

If u G Wp(fL) is a bounded, weak solution of (1), let id(r) = s\xp{u(x): x G 

#(*o> r)} » w n e r e x0 Ed£l. Suppose k > f(x0) and let uk = (u - k)+. 

THEOREM. There is a constant C depending only on n, p, the bound for 
u, the coefficients in (2), and ô such that for all sufficiently small rt 

(5) rt>~» ƒ \Wk\
p < CLu(2r) - n(r) + a(r)] ^ 

whenever u(x0) < f(x0) weakly and where 
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a(r) = r + I K + a 2 | | ^ : J ) B ( w ) 

+ | | C i + C 2 + Ö 2 + M i / ( P - a / 2 ) ^ ^ . 

Suppose u is a solution of (1) such that u(x0) = f(x0) weakly but that 
lim^.-^ .^gfl^W ^f(xo)' ïf (4) holds the gradient estimate (5) is used to show 
that there is a set E which is Tp-thin at x0 (see [ME] for definition) such that 
u(x) tends to a limit £/£ Thus, in terms analogous to the classi­
cal case, u has a T -fine limit at x0. 

Proofs of these and other results will appear elsewhere. 
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