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Consider the nonlinear integral equation of Hammerstein type 

(1) u(x) + J"n k(x, y)f(y, u(y)Mdy) = h{x) (x G £2), 

where h and the solution u lie in a space X of measurable functions on £1. The 
Hammerstein equation is said to be regular if for 

(2) F(u)(y) = f(yy u(y)) (y G ft); Kv(x) = J f i k(x, y)v(y)p(dy) (x G ft), 

the operator KF is defined on all of X, and singular otherwise. 
In some recent papers (summarized in [2]), the writers have studied the 

existence theory for regular Hammerstein equations in Lp(|3) with 1 <p < +°° 

under very general assumptions on K and F. In later papers (cf. [4] ), one of the 
writers has obtained general existence results for the singular case, using measure-
theoretic arguments and mild compactness assumptions on K. We present results 
here without compactness assumptions based on a new theorem on linear mono­
tone operators. 

THEOREM 1. Let X be a reflexive Banach space, LQ and Lx linear mono­

tone mappings from X into 2X* with L0 ÇL%. Then there exists a maximal 

monotone linear map from X into 2X such that L0 CL Ç L\. 

For single-valued, densely defined maps in Hubert space, this coincides with 
a theorem of R. S. Phillips [6] obtained using ideas of M. Kreïn [5]. For reflex­
ive Banach spaces, in general, we have as a corollary a result obtained in 1968 by 
one of the writers [1] : 

THEOREM 2. Let X be a reflexive Banach space, L a closed linear mono­

tone map from X into 2X . Then L is maximal monotone if and only if L* is 

monotone. 

We sketch the proof of Theorem 1 (detailed proofs are given in [3] ). By 
a Zorn's Lemma argument we may construct a monotone linear map L with L0 

Ç L Ç L\ such that L is maximal monotone in the graph of L\. Let / be a 
duality map of X into X* corresponding to a norm on X with X and X* locally 
uniformly convex. 
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Let w0 be any element of X*. It suffices to find u0 in X such that w0 

G (L + J)(u0). For each finite-dimensional subspace M of X, let £M be the in­
jection map of M into X, tffa: X* —> M*. We form linear monotone mappings 
LM and LlM of M into 2M* with LM C (Lx M)* by 

LM(X) = &£(*))> Z I , M W = W i t o ) -
We apply the multivalued finite-dimensional version of Phillips' theorem (a simple 

direct proof for which is given in [3]) to obtain a maximal monotone mapping 

KM from M to 2M* such that LM Ç KM Ç (Lx M)*. Hence, we may find uM in 

M such that ÉfcOvo) G KM(uM) + & ( / ( K M ) ) . ' 
For each [w, w] in G ^ ) and for each [x, ƒ] in G(L) with w and x in M, 

(3) (w0 -J(uM\ u) = <w, wM>, 

(4) (y + /(t/M) - w0, x - uM) > 0. 

The elements { [uM, J(uM)] } are bounded since J is coercive. Since X is reflex­

ive, we may assume a filter { [uM, J(uM)] } converging weakly to [u0, yQ] in X 

x X*. Since equality (3) holds eventually for each [u, w] in G(Lt), we may 

take the limit to find that <w0 ~ ^ 0 , w> = <w, w0> for all [u, w] in G(Lt). 

Hence [w0, w0 - j>0] lies in G(Z,J). From inequality (4) which holds eventually 

for each [x, y] in G(L), we obtain 

(5) lim</((wM), uM)) - <y0, uQX(y + y0-w0, x - u0). 

Since J is pseudo-monotone, the left side is nonnegative. Since [u0, w0 - y0] 

G G(L\) and L is assumed maximal monotone in G(X*), [w0, w0 --.y0] lies in 
G(L). Replacing [x, y] by this element, it follows that the left side of (5) is 
zero, and hence y0 = J(u0). Thus w0 - J(u0) G L(u0), i.e. w0 G(L + J) 

( I I 0 ) . Q.E.D. 

The application to singular Hammerstein equations is made through the 

following more general theorem: 

THEOREM 3. Let p be a finite measure on £2, X a reflexive Banach space 

with L°°(P) ÇXÇ L1^), L°°(P) ÇX* CZ1(j8> Let F be a hemicontinuous, 

monotone angle-bounded map of X into X* with 0 E ln\{R(F)). Let K be a 

bounded linear map of Lx(fi) into Ll($) with {Kv, v) > 0 for all v in L°°(fi) 

Then for each h in X, there exists u in X such that u + KF(u) = h and {Kv -

KF(u), v - F{u)) > 0 for all v G L°°(p) with Kv G X. 

To prove Theorem 3, we may set h = 0 by a change of variables. Let Lx 

be the mapping from X* to X with effective domain L°°(j5) and with Lt(v) = 

K'(v) where K': L°°(0) —• L°°(fi) is the dual of K. Then Lt is monotone and 

L\ is a restriction of A'. Let A"# be the mapping from X* to X with domain 

D(K#) = {vGL°°(P) and tfu EX} andK#v = tfu. Since K# C L* we may find 
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by Theorem 1, a maximal monotone operator L satisfying K# Ç L Ç L*. Fi­
nally one solves 0 G L~x(u) + F(u). 
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