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1. Introduction. This note is concerned with the classes of pseudo 
differential operators Lm'M(Çl, 2), 2 symplectic submanifold of codimension 2, 
in Sjöstrand [4] ; the definitions of P in Z,m,M(£2, 2) and of the associated wind
ing number TV are recalled in §2. In Helffer [2] the study of the hypoellipticity 
of P is reduced to the analysis of the bounded solutions of an ordinary different
ial equation. Here we deduce an explicit result for N = 2 - Af: essentially, we 
can prove that in this case all the bounded solutions are products of an exponen
tial function with polynomials. 

2. The classes Lm'M(£l, 2) and the winding number. Let £2 C R" be an 

open set. Let 2 C T*(£l)\0 be a closed conic symplectic submanifold of co-
dimension 2 (2 symplectic means that the restriction of the symplectic form 
co = Zd%s A dxs to 2 is nondegenerate). Lm'M(£l, 2) is the set of all the pseudo 
differential operators P which have a symbol of the form 

oo 

( 0 P(X> £ ) ~ ZPm-//2(*> £)> 
/=0 

where pm_u2 *s positively homogeneous of degree m - j/2 and for every K CC 
£2 there exists a constant CK such that 

(2) \pm(x, öl/l tr > C£ld™{x, 0, 

(3> IPm-//2(* O!/!*!"1""2 < CKd%-l{x, » , 0 < ƒ < M, 

for all (x, | ) G K x R", |Ç| > 1 (dL(jc, %) is the distance from (x, £/|£|) to 2). 
Fix p in 2 , denote by Wp(2) the orthogonal space of Tp(2) with respect 

to co and choose two linear coordinates on N ÇL) uv u2 such that co/Afp(2) = 
du2 A dux. Take X = (uv u2) G JVp(2) and let V be any vector field on r*(£2) 
equal to X at p. We define the homogeneous polynomial 
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M J 

(4) ^ n ( « 2 - v . ) ^ ^ \ ) p . 

In view of (2) Im rh =£ 0 for each h, h = 1, . . . , Af: let M+ (M~~) be the number 
of the rh

9s such that Im rh > 0 (Im rh < 0). The integer N = M+ -M~~ may 
take the values Af, Af - 2, . . . , 2 -- Af, - Af; here we assume Af > 2 and 

(5) TV = 2 - Af, /or every p in 2 . 

3. The problem of the hypoellipticity. Let P E Lm>M(Çl, 2) satisfy (5). 
We are interested in the following hypoellipticity property: 

,£v For <wiy open subset U of £2 0«<i drwy distribution ƒ in U, PfG 

H\oc{U) implies f € Hf£»-Ml\U). 

Let P be the algebraic vector space of all the polynomials in one real variable 
with complex coefficients and denote by L(P) the space of all the linear maps 
from P into P . We associate to P an application Ap: p E 2 —• Ap(p) E L(P). 

The explicit definition of Ap will be given in §4; first let us state our main 
result. 

THEOREM 1. Let Pe Lm>M(Sl, 2) satisfy (5). Then (6) holds if and only 

if 

(7) dimension Ker Ap{p) = 0, /or every p in 2 . 

4. Definition of ^4p(p). If (5) is satisfied, then it is M+ - 1 and M~~ = 
Af - 1 : we will assume Im rh < 0 for 2 < h < Af and Im rj > 0. As in Helffer 
[2], initially we construct a family of ordinary differential operators with 
polynomial coefficients. Consider the symbol q(x, £) with asymptotic expansion 

( - l ) ' i ' 1 92 \* 
Z^- / / 2 ~Z o „ (2 a j ^ J p . 

Using the notations of §2, we define on iV (2) the polynomial (the leading 
part coincides with (4)) 

M _ M i 

( 8 ) c I l ( « 2 - V i ) + 2 ^ * « ? « § - 2 -TjTTÂi ( ^ " ' « » - / / 2 ) p -

We rewrite the left-hand side of (8) in the symmetric form 

(g\ ^ cyWu 

where the components of the multiorder y(h) = (yl9 . . . , yh) may take the 

value 1 or 2, cy^ = c8^Hy if \y(h)\ = |8(/i)l and we have noted 

(10) u ^ = uyiuy2---uyh. 
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Now, maintaining the order of the factors in (10), we replace u2 in (9) by D = 
- id'I'du j . We get a differential operator M(p) which can be expressed in the form 

(11) M(p) = c ( Z ) - r M i i 1 ) - - - ( D - r 1 i i 1 ) + E cn
a^u\DP. 

OL + (3<M 

Set 
_ I M 

(12) 7? = - / Z y / c l l ( ' i - ^ 
a + 0 = M - l / ft = 2 

We define for Ö £ P , 

-4p(p)Û("i) = exp(-Ér x 1*̂ /2 - 1 ? ^ ) 
(13) 

. M(p) [expCirjiiî/2 + W J X X K I ) ] . 

The definition of ^4p(p) depends on the initial choice of the coordinates uv u2. 
We can prove that, starting from other canonical coordinates u\, u2 and repeat
ing the construction, we get a map A'p(p) such that U"1 (p)Ap(p)U(p) = Ap(p) 
for some automorphism U(p) in L(P). Therefore condition (7) has an invariant 
meaning. 

5. Applications. Take Q(ux) = E ^ Q O ^ . Developing (13) we obtain 

(14) Ap(p)Q(ut)= £ Z V P K 
M = 0 \ i>=0 / 

where d v are polynomials in the variables c, r1? . . . , rM, c ^ . We write $k^ 
for the matrix (d^^), p. = 0, . . . , k + M - 2, i> = 0, . . . , k. Let a = {p0, 
p l 5 . . . , pk} be a subset of {0, 1, . . . ,k + M- 2} and let p W denote the 
minor (d ), r = 0, . . . , k, v = 0, . . . , k. Theorem 1 can be rewritten in 
the following way. 

THEOREM 2. Let P G Lm>M(Çl, S) satisfy (5). Then (6) holds if and 

only if for each fixed p G S and for every integer k > 0 there exists a subset 

o = (MO> MI J • • • > M*;} o / {0, 1, . . . , fc + Af - 2}, such that 

(15) d e t l # ) = E 0 . 

A direct computation shows that for o 0 = { A f - 2 , A f - l , . . . , f c + M - 2 } 

d e t p W = X(p) n ^ ( P ) - H , 

where X(p), £(p) are rational functions of cy rx, . . . , rM, c^,j3: X(p) =£ 0 and 
£(p) coincides with the invariant in Boutet de Monvel and Treves [1] and 
Helffer [3]. 
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