ELLIPTIC PSEUDO DIFFERENTIAL OPERATORS DEGENERATE ON A SYMPLECTIC SUBMANIFOLD

BY BERNARD HELFFER AND LUIGI RODINO Communicated by Robert T. Seeley, April 12, 1976

1. Introduction. This note is concerned with the classes of pseudo differential operators $L^{m,M}(\Omega, \Sigma)$, Σ symplectic submanifold of codimension 2, in Sjöstrand [4]; the definitions of P in $L^{m,M}(\Omega, \Sigma)$ and of the associated winding number N are recalled in §2. In Helffer [2] the study of the hypoellipticity of P is reduced to the analysis of the bounded solutions of an ordinary differential equation. Here we deduce an explicit result for N = 2 - M: essentially, we can prove that in this case all the bounded solutions are products of an exponential function with polynomials.

2. The classes $L^{m,M}(\Omega, \Sigma)$ and the winding number. Let $\Omega \subset \mathbb{R}^n$ be an open set. Let $\Sigma \subset T^*(\Omega) \setminus 0$ be a closed conic symplectic submanifold of codimension 2 (Σ symplectic means that the restriction of the symplectic form $\omega = \Sigma d\xi_s \wedge dx_s$ to Σ is nondegenerate). $L^{m,M}(\Omega, \Sigma)$ is the set of all the pseudo differential operators P which have a symbol of the form

(1)
$$p(x, \xi) \sim \sum_{j=0}^{\infty} p_{m-j/2}(x, \xi),$$

where $p_{m-j/2}$ is positively homogeneous of degree m-j/2 and for every $K \subset \Omega$ there exists a constant C_K such that

(2)
$$|p_m(x, \xi)|/|\xi|^m \ge C_K^{-1} d_{\Sigma}^M(x, \xi),$$

(3)
$$|p_{m-j/2}(x, \xi)|/|\xi|^{m-j/2} \leq C_K d_{\Sigma}^{M-j}(x, \xi), \quad 0 \leq j \leq M,$$

for all $(x, \xi) \in K \times \mathbb{R}^n$, $|\xi| > 1$ $(d_{\Sigma}(x, \xi)$ is the distance from $(x, \xi/|\xi|)$ to Σ).

Fix ρ in Σ , denote by $N_{\rho}(\Sigma)$ the orthogonal space of $T_{\rho}(\Sigma)$ with respect to ω and choose two linear coordinates on $N_{\rho}(\Sigma) u_1$, u_2 such that $\omega/N_{\rho}(\Sigma) = du_2 \wedge du_1$. Take $X = (u_1, u_2) \in N_{\rho}(\Sigma)$ and let V be any vector field on $T^*(\Omega)$ equal to X at ρ . We define the homogeneous polynomial

Copyright © 1976, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 35H05, 35S05.

Key words and phrases. Pseudo differential operators, classes $L^{m,M}(\Omega, \Sigma)$, symplectic submanifold, winding number.

(4)
$$c \prod_{h=1}^{M} (u_2 - r_h u_1) = \frac{1}{M!} (V^M p_m)_{\rho}.$$

In view of (2) Im $r_h \neq 0$ for each h, h = 1, ..., M: let M^+ (M^-) be the number of the r_h 's such that Im $r_h > 0$ (Im $r_h < 0$). The integer $N = M^+ - M^-$ may take the values M, M - 2, ..., 2 - M, -M; here we assume $M \ge 2$ and

(5)
$$N = 2 - M$$
, for every ρ in Σ .

3. The problem of the hypoellipticity. Let $P \in L^{m,M}(\Omega, \Sigma)$ satisfy (5). We are interested in the following hypoellipticity property:

(6) For any open subset U of Ω and any distribution f in $U, Pf \in H^s_{loc}(U)$ implies $f \in H^{s+m-M/2}_{loc}(U)$.

Let P be the algebraic vector space of all the polynomials in one real variable with complex coefficients and denote by L(P) the space of all the linear maps from P into P. We associate to P an application $A_P: \rho \in \Sigma \longrightarrow A_P(\rho) \in L(P)$. The explicit definition of A_P will be given in §4; first let us state our main result.

THEOREM 1. Let $P \in L^{m,M}(\Omega, \Sigma)$ satisfy (5). Then (6) holds if and only if

(7) dimension Ker
$$A_P(\rho) = 0$$
, for every ρ in Σ

4. Definition of $A_P(\rho)$. If (5) is satisfied, then it is $M^+ = 1$ and $M^- = M - 1$: we will assume Im $r_h < 0$ for $2 \le h \le M$ and Im $r_1 > 0$. As in Helffer [2], initially we construct a family of ordinary differential operators with polynomial coefficients. Consider the symbol $q(x, \xi)$ with asymptotic expansion

$$\sum_{j=0}^{\infty} q_{m-j/2} \sim \sum_{t=0}^{\infty} \frac{(-1)^t}{t!} \left(\sum \frac{1}{2i} \frac{\partial^2}{\partial x_s \partial \xi_s} \right)^t p_s$$

Using the notations of §2, we define on $N_{\rho}(\Sigma)$ the polynomial (the leading part coincides with (4))

(8)
$$c \prod_{h=1}^{M} (u_2 - r_h u_1) + \sum_{\alpha+\beta < M} c_{\alpha,\beta} u_1^{\alpha} u_2^{\beta} = \sum_{j=0}^{M} \frac{1}{(M-j)!} (V^{M-j} q_{m-j/2})_{\rho}.$$

We rewrite the left-hand side of (8) in the symmetric form

(9)
$$\sum_{\gamma(h),h\leq M} c'_{\gamma(h)} u^{\gamma(h)},$$

where the components of the multiorder $\gamma(h) = (\gamma_1, \ldots, \gamma_h)$ may take the value 1 or 2, $c'_{\gamma(h)} = c'_{\delta(h)}$ if $|\gamma(h)| = |\delta(h)|$ and we have noted

(10)
$$u^{\gamma(h)} = u_{\gamma_1} u_{\gamma_2} \cdots u_{\gamma_h}.$$

Now, maintaining the order of the factors in (10), we replace u_2 in (9) by $D = -id/du_1$. We get a differential operator $M(\rho)$ which can be expressed in the form

(11)
$$\mathbb{M}(\rho) = c(D - r_M u_1) \cdots (D - r_1 u_1) + \sum_{\alpha + \beta < M} c_{\alpha,\beta}' u_1^{\alpha} D^{\beta}.$$

Set

(12)
$$\eta = -i \sum_{\alpha+\beta=M-1} c_{\alpha,\beta}'' r_1^{\beta} / c \prod_{h=2}^M (r_1 - r_h).$$

We define for $Q \in P$,

(13)
$$A_{P}(\rho)Q(u_{1}) = \exp(-ir_{1}u_{1}^{2}/2 - \eta u_{1})$$
$$\cdot M(\rho) \left[\exp(ir_{1}u_{1}^{2}/2 + \eta u_{1})Q(u_{1})\right].$$

The definition of $A_p(\rho)$ depends on the initial choice of the coordinates u_1 , u_2 . We can prove that, starting from other canonical coordinates u'_1 , u'_2 and repeating the construction, we get a map $A'_p(\rho)$ such that $U^{-1}(\rho)A'_p(\rho)U(\rho) = A_p(\rho)$ for some automorphism $U(\rho)$ in L(P). Therefore condition (7) has an invariant meaning.

5. Applications. Take $Q(u_1) = \sum_{\nu=0}^k b_{\nu} u_1^{\nu}$. Developing (13) we obtain

(14)
$$A_{P}(\rho)Q(u_{1}) = \sum_{\mu=0}^{k+M-2} \left(\sum_{\nu=0}^{k} d_{\mu,\nu}b_{\nu}\right)u_{1}^{\mu},$$

where $d_{\mu,\nu}$ are polynomials in the variables $c, r_1, \ldots, r_M, c''_{\alpha,\beta}$. We write $\mathcal{D}^{(k)}$ for the matrix $(d_{\mu,\nu}), \mu = 0, \ldots, k + M - 2, \nu = 0, \ldots, k$. Let $\sigma = \{\mu_0, \mu_1, \ldots, \mu_k\}$ be a subset of $\{0, 1, \ldots, k + M - 2\}$ and let $\mathcal{D}_{\sigma}^{(k)}$ denote the minor $(d_{\mu,\nu}), t = 0, \ldots, k, \nu = 0, \ldots, k$. Theorem 1 can be rewritten in the following way.

THEOREM 2. Let $P \in L^{m,M}(\Omega, \Sigma)$ satisfy (5). Then (6) holds if and only if for each fixed $\rho \in \Sigma$ and for every integer $k \ge 0$ there exists a subset $\sigma = \{\mu_0, \mu_1, \ldots, \mu_k\}$ of $\{0, 1, \ldots, k + M - 2\}$, such that

(15)
$$\det \mathcal{D}_{\sigma}^{(k)} \neq 0.$$

A direct computation shows that for $\sigma_0 = \{M-2, M-1, \dots, k+M-2\}$

det
$$\mathcal{D}_{\sigma_0}^{(k)} = \lambda(\rho) \prod_{\nu=0}^k \left[\ell(\rho) - \nu \right],$$

where $\lambda(\rho)$, $\ell(\rho)$ are rational functions of $c, r_1, \ldots, r_M, c''_{\alpha,\beta}: \lambda(\rho) \neq 0$ and $\ell(\rho)$ coincides with the invariant in Boutet de Monvel and Treves [1] and Helffer [3].

REFERENCES

1. L. Boutet de Monvel and F. Trèves, On a class of pseudodifferential operators with double characteristics, Invent. Math. 24 (1974), 1-34. MR 50 #5550.

2. B. Helffer, Invariants associés à une classe d'opérateurs pseudodifférentiels et applications à l'hypoellipticité, Ann. Inst. Fourier (Grenoble) (to appear).

3. -----, Sur une classe d'opérateurs hypoelliptiques à caractéristiques multiples, J. Math. Pures Appl. (to appear).

4. J. Sjöstrand, Parametrices for pseudodifferential operators with multiple characteristics, Ark. Mat. 12 (1974), 85–130, MR 50 #5236.

CENTRE DE MATHÉMATIQUES, ÉCOLE POLYTECHNIQUE, 91120 PALAISEAU, FRANCE

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08540

Current Address (Luigi Rodino): Istituto Matematico del Politecnico, Corso Duca Degli Abruzzi 24, I-10129 Torino, Italy