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We describe here a deformation theorem for geodesic fields on a Rieman­
nian manifold and an obstruction whose vanishing is necessary and sufficient for 
deforming one geodesic field into another. As an application we prove that every 
smooth manifold of dimension > 2 can be given a Riemannian metric with a non-
triangulable cut locus. In [5] we obtain an "equivariant" deformation theorem 
by entirely different methods, and a consequent strengthening of the cut locus 
results. We thank Professors Richard Hamilton and Albert Nijenhuis for insights 
gained in conversation with them. 

1. The cut locus. On each geodesic from the point p on the compact Rie­
mannian manifold M, the cut point is the last point to which the geodesic min­
imizes distance, and the cut locus C(p) is the set of these. This notion was intro­
duced by Poincaréin 1905 and has since played an important role in global dif­
ferential geometry [3]. 

In 1935 Myers [4] showed that on a compact analytic surface, the cut 
locus can be triangulated as a finite graph. Recently this has been extended to 
arbitrary dimensions by the work of Buchner, Mather, Hironaka and Kato [2]. 
Buchner proved in his thesis [1] that on any smooth compact manifold of di­
mension < 5, there is an open and dense set of Riemannian metrics for which 
the cut locus of a point p is structurally stable under perturbation of metric (and 
one expects triangulable). By contrast we prove 

THEOREM 1. On any smooth manifold o f dimension > 2, there is a Rie­

mannian metric and a point p with nontriangulable cut locus C(p). 

2. The connection with deformations of geodesic fields. The problem of 
preassigning a cut locus led us to the study of deformations of geodesic fields. 
In Figure 1 we start with a round sphere and try to preassign a cut locus C of 
the south pole. We draw out from C a smooth family G' of geodesies heading 
roughly south, and from the south pole the family G of geodesies heading north. 
It seems natural to try to deform the round metric in a neighborhood of the 
equator so as to deflect the geodesic field G' into G, like a lens focusing some 
light rays from C to make them converge at the south pole. 
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FIGURE 1 

3. The general deformation theorem. In Figure 2, the round sphere has 
been replaced by a Riemannian manifold N, and the equator by a compact hyper-
surface M which separates N. Two geodesic fields G and G' are given on TV, both 

crossing M transversely. PROBLEM. Is it possible to deform the metric on N near 
M so as to produce a field of geodesies connecting G below M to G' above? To 
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FIGURE 2 

state the result, let F denote the unit tangent vector field to G and co the dual one-

form on N defined by u*(U) = U • V, and similarly define V and GO' relative to G\ 

THEOREM 2. A necessary and sufficient condition for being able to deform 

the metric on N near M so as to produce a field of geodesies connecting G and 

G', is the existence of a diffeomorphism 0: M —• Af, concordant to the identity, 

such that the one-form on AT, co|M - 0*(co'|M), is exact. 

The map 0 tells which geodesies of G and G' are hooked together. 

4. Integrable geodesic fields. A field G of geodesies on A7" is integrable 

if the orthogonal (n - 1) plane distribution is integrable in the usual sense of 
being tangent to a foliation. In this case dco = 0, so that co determines a co-
homology class [co] GHl(N;R), any by restriction [co|M] G / f 1 ^ ; ^ ) . Then 
Theorem 2 simplifies to 
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THEOREM 3. A necessary and sufficient condition for being able to de­
form the metric on N near M so as to produce a field of geodesies connecting 
the integrable geodesic fields G and G\is that 

M M ! = [<o'\M\^Hl{M;R). 

This is sufficient to prove Theorem 1, since geodesies from a fixed point p 

form an integrable field wherever they do not cross. 

ADDENDUM TO THEOREM 3. The deformed metric on N can always be 

chosen pointwise conformai to the original metric. 

This is of use in anticipated applications to optics. 

5. Nontriangulable cut loci. Refer back to Figure 1. It is not difficult to 
choose a field G' of geodesies coalescing along a set C which is disconnected into 
infinitely many components by removal of the north pole and is therefore non­
triangulable. At the same time we arrange to satisfy the conditions of Theorem 
3, which then yields a metric on the sphere having C as cut locus of the south 
pole. Albert Nijenhuis pointed out to us that such a metric can be seen in three-
space on a sphere, round except for an infinite sequence of bumps of decreasing 
size, along the equator. 

To obtain a metric with nontriangulable cut locus onM™, m>2, begin 
with one on Sm as above. Keeping the sphere round except near the eastern 
half of the equator, attach a copy of AP to the western hemisphere by a tube 
as in Figure 3. No geodesic on the union AT" # Sm which starts from the south 

FIGURE 3 

pole and heads into the open western hemisphere can have its cut point in the 
eastern hemisphere, save at the north pole. This guarantees that the cut locus of 
the south pole on M™ # Sm is still disconnected into infinitely many components 
by removal of the north pole, and is hence nontriangulable, proving Theorem 1. 

REFERENCES 

1. M. Buchner, Stability of the cut locus, Thesis, Harvard Univ., (1974). 
2. H. Hironaka, Subanalytic sets. Number theory, algebraic geometry and commu­

tative algebra, Kinokuniya, Tokyo, 1973. 



574 HERMAN GLUCK AND DAVID SINGER 

3. S. Kobayashi, On conjugate and cut loci, Studies in Global Geometry and Anal­
ysis, Math. Assoc. Amer, Prentice-Hall, Englewood Cliffs, N. J, 1967, pp. 96—122. MR 
35 # 3603. 

4. S. B. Myers, Connections between differential geometry and topology: I, II, Duke 
Math. J. 1 (1935), 376-391, ibid., 2 (1936), 95 -102 . 

5. D. Singer and H. Gluck, The existence of nontriangulable cut loci. Bull. Amer. 
Math. Soc. (to appear). 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, PHILA­
DELPHIA, PENNSYLVANIA 19174 

DEPARTMENT OF MATHEMATICS, CASE WESTERN RESERVE UNIVERSITY, 
CLEVELAND, OHIO 44106 


