A LANGUAGE FOR TOPOLOGICAL STRUCTURES WHICH SATISFIES A LINDSTRÖM-THEOREM ## BY M. ZIEGLER ## Communicated January 26, 1976 I. The language L^t . Let L_2 be the 2-sorted first order language appropriate for structures $(\mathfrak{A}, \alpha, \epsilon)$, where \mathfrak{A} is a L-structure and α is a set of subsets of A. We call (\mathfrak{A}, α) topological if α is a topology. We call a formula of L_2 topological if it is built up using the set quantifier $\exists X$ only in the form $\exists X(t \in X \land \phi)$, X does not occur positively in ϕ . (X occurs positively in ϕ if a free occurrence of X in ϕ is inside the scope of an even number of negation symbols. Note. Primitive symbols are \wedge , \neg , $\exists x$, $\exists X$.) L^t is defined as the set of topological sentences of L_2 . LEMMA. (a) Define $\widetilde{\beta} = \{\bigcup s | s \subset \beta\}$. Then for all $\phi \in L^t$, $(\mathfrak{A}, \beta) \models \phi$ iff $(\mathfrak{A}, \widetilde{\beta}) \models \phi$. (I.e. ϕ is invariant in the sense of Garavaglia [1].) (b) $\widetilde{\beta}$ is a topology iff $(\mathfrak{U}, \beta) \models \text{top}$, where top is the L^t -sentence $\forall x (\exists X \land x \in X) \land \forall x \forall X (x \in X \longrightarrow \forall Y (x \in Y))$ $$\rightarrow \exists Z (x \in Z \land \forall y (y \in Z \rightarrow y \in X \land y \in Y))).$$ In the sequel "model" means "topological model". COROLLARY (see [1]). (a) $T \subset L^t$ has a model iff $T \cup \{top\}$ is consistent (in the 2-sorted predicate calculus of L_2). - (b) The set of L^t -sentences true in all models is r.e. - (c) L^t satisfies the compactness theorem: T has a model iff every finite subset of T has a model. - (d) L^t satisfies the downward Löwenheim-Skolem theorem (L countable): If T has an infinite model, it has a "countable" model (\mathfrak{U}, α) , i.e. A countable, α having a countable base. By the methods of the next section we can prove a Lindström- Theorem. Let L^* be a language for topological structures extending L^t and satisfying the compactness theorem and the downward Löwenheim-Skolem theorem. Then $L^* = L^t$. AMS (MOS) subject classifications (1970). Primary 02B99, 02H99; Secondary 02G05, 54J05, 54D10. $^{^{1}}$ I have seen, that L^{t} was first considered for topological spaces by T. A. McKee in two articles in the Z. Math. Logik Grundlagen Math. 21 (1975), 405-408 and ibid. (1976). COROLLARY. $\phi \in L_2$ is invariant iff top $\vdash \phi \longleftrightarrow \psi$ for $a \psi \in L^t$. So L^t seems to be the natural language for topological structures. REMARK. One can translate the (weaker) topological logics $L(Q^n)$, $L(I^n)$ considered in [2], [3] into L^t . "f continuous" and the separation axioms $T_0 - T_3$ are expressible in L^t . II. The Ehrenfeucht-Fraissé game for L^t . There are two players, I and II, for the ν -E.F. game between the two models $\mathfrak{A}_i = (\mathfrak{A}_i, \alpha_i)$, $i \in 2$. The kth move is: I chooses $i \in 2$, $a_i \in A_i$ and a neighbourhood N_i^k of a_i^k . Then II chooses $a_{1-i}^k \in A_{1-i}$ and a neighbourhood N_{1-i}^k of a_{1-i}^k . After ν moves II has won if $\{\langle a_0^k, a_1^k \rangle | < \nu \}$ is a partial isomorphism between \mathfrak{A}_0 and \mathfrak{A}_1 and if for all N_i^k chosen by I and all $j < \nu$, $a_{1-i}^j \in N_{1-i}^k \Rightarrow a_i^j \in N_i^k$. THEOREM. (a) \mathfrak{M}_0 and \mathfrak{M}_1 are L^t -elementarily equivalent iff player II has a winning strategy for all n-E.F.-games between \mathfrak{M}_0 and \mathfrak{M}_1 , $n \in \omega$. (b) Suppose $|A_i| \leq \kappa$, and α_i possesses a base of power $\leq \kappa$, $i \in 2$. Then $\mathfrak{M}_0 \cong \mathfrak{M}_1$ iff there is a winning strategy for II in the κ -E.F.-game between \mathfrak{M}_0 and \mathfrak{M}_1 (L finite). REMARK. The E.F.-game described above approximates isomorphisms. One can design E.F.-games approximating other relations between models: e.g. " $\mathbb{M}_0 \subset \mathbb{M}_1$ " (i.e. \mathbb{M}_0 is a substructure of \mathbb{M}_1 , α_0 the subspace topology), " $\mathbb{M}_0 = \mathbb{M}_1$, α_0 coarser than α_1 " or " \mathbb{M}_0 is a continuous and homomorphic image of \mathbb{M}_1 ". III. Saturation. We call (\mathfrak{A}, α) $(\kappa$ -) saturated if there is a base β for α s.t. (\mathfrak{A}, β) is $(\kappa$ -) saturated in the usual sense of L_2 . THEOREM. (a) Every L^t -theory has a κ -saturated model. - (b) If U is a κ -good ultrafilter on I and $|L| < \kappa$, then \mathfrak{M}^I/U is κ -saturated $((\mathfrak{U}, \alpha)^I/U = (\mathfrak{U}^I/U, (\alpha^{I/U})))$. - (c) Two saturated, L^t -elementarily equivalent models of the same cardinality are isomorphic. - (d) Two models are L^t -elementarily equivalent iff they have isomorphic ultrapowers. - IV. **Definability**. $T \vdash_t \phi$ means: ϕ holds in all models of T. By either the methods of II or III we can prove the INTERPOLATION THEOREM. Assume $\vdash_t \phi \longrightarrow \psi$ and $\phi, \psi \in L^t$. Then there is a $\theta \in L^t$ containing only nonlogical symbols which occur in both ϕ and ψ , s.t. $\vdash_t \phi \longrightarrow \theta$ and $\vdash_t \theta \longrightarrow \psi$. REMARKS. (a) The analogue of Lyndon's interpolation theorem holds. (b) Beth's theorem follows as usual for L^t . 570 M. ZIEGLER Define ϕ to be universal if ϕ becomes universal in the usual sense if we erase all set-quantifiers. We have the PRESERVATION THEOREM. Let $T \subset L^t$, ϕ , $\psi \in L^t$. The following are equivalent: (a) For all T-models $\mathfrak{M}_0 \supset \mathfrak{M}_1$, $\mathfrak{M}_0 \models \phi \Rightarrow \mathfrak{M}_1 \models \psi$. (b) There is a universal $\theta \in L^t$ s.t. $T \vdash_t \phi \longrightarrow \theta$, $T \vdash_t \theta \longrightarrow \psi$. REMARK. There are syntactical characterisations of the L^t -sentences preserved by various other relations between models (e.g. the relations given in (II)). V. Decidability. The relation "x cannot be separated from y by disjoint closed neighbourhoods" can be arbitrary in T_2 -spaces. So we have Theorem $(L = \emptyset)$. The theory of T_2 -spaces is undecidable. The countable T_3 -spaces have a base of clopen sets. Using this and the decidability of the monadic theory of countable trees we can prove Theorem (L consists of unary predicates). The theory of T_3 -spaces with a finite number of distinguished subsets is decidable. REMARK. The L^t -elementary types can be characterized by simple invariants, e.g. all T_3 -spaces without isolated points are elementarily equivalent. In fact this theory is " \aleph_0 -categorical". ## REFERENCES - S. Garavaglia, Completeness for topological languages, Notices Amer. Math. Soc. 22 (1975), p. A-473. Abstract # 75T-E36. - 2. J. A. Makowsky, An extension of topological first order logic with a back and forth characterization of elementary equivalence, 1975 (preprint). - 3. J. Sgro, Completeness theorems for topological models; Completeness theorems for product topologies and continuous functions, Thesis, Yale Univ., 1974. (to appear). TU BERLIN, FB 3, HARDENBERGSTR. 4-5, 1000 BERLIN 12, GERMANY