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I. The language Lt. Let L2 be the 2-sorted first order language appro­
priate for structures (?I, a, e), where 21 is a L-structure and a is a set of subsets 
of A. We call (?I, a) topological if a is a topology. We call a formula of L2 

topological if it is built up using the set quantifier 3X only in the form lX(t E 
X A0), X does not occur positively in 0. (X occurs positively in 0 if a free oc­
currence of Xin 0 isIinside the scope of an even number of negation symbols. 
Note. Primitive symbols are A, 1,3x,3X.) Lf is defined as the set of topological 
sentences of L2} 

LEMMA, (a) Define *$ = {\Js\s C /?}. Then for all 0 G Z/, (21, /}) |= 0 iff 

(21, /T) |= 0. (I.e. 0 is invariant in the sense of Garavaglia [1].) 

(b) /T is a topology iff(U, /3) |= top, where top is r/ie Lt-sentence 

Vx(3XAx G X) AVxVX(x G X - • VF(x G Y 

-~> 3Z(x G ZAVy(y £Z-+yeXf\ye Y)))). 
In the sequel "model" means "topological model". 

COROLLARY (see [1] ). (a) T C V has a model iff TU {top } is consistent 

(in the 2-sorted predicate calculus of L2). 

(b) The set of L*-sentences true in all models is r.e. 

(c) Lf satisfies the compactness theorem: T has a model iff every finite 

subset of T has a model. 

(d) Lf satisfies the downward Löwenheim-Skolem theorem (L countable): 

If T has an infinite model, it has a "countable" model (21, a), Le. A countable, 

a having a countable base. 

By the methods of the next section we can prove a Lindstrom-

THEOREM. Let L* be a language for topological structures extending Lt 

and satisfying the compactness theorem and the downward Löwenheim-Skolem 

theorem. Then L* = Lf. 

AMS (MOS) subject classifications (1970). Primary 02B99, 02H99; Secondary 02G05, 
54J05, 54D10. 

*I have seen, that L was first considered for topological spaces by T. A. McKee in 
two articles in the Z. Math. Logik Grundlagen Math. 21 (1975), 405-408 and ibid. (1976). 
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COROLLARY. 0 G L2 is invariant iff toph 0 <—• ^ for a \jj EL*. 

So L* seems to be the natural language for topological structures. 

REMARK. One can translate the (weaker) topological logics L(Qn), Kf1) 

considered in [2], [3] into L%. "/continuous" and the separation axioms TQ — 

T3 are expressible in L*. 

II. The Ehrenfeucht-Fraisse' game for L*. There are two players, I and II, 
for the i^-E.F. game between the two models SĤ  = ($.9 a(), i G 2. The fcth 

move is: I chooses / G 2, at G At and a neighbourhood N* of af. Then II 
chooses ak

x_. EA1__i and a neighbourhood N\_t of a\_t. After v moves II has 
won if {<0Q, a\) \ < i>}is a partial isomorphism between 2I0 and Ux and if for 
all N* chosen by I and all ƒ < *>, ^ { ^ G #*_, =>aj G7V?\ 

THEOREM, (a) 1 0 and l j are L*-elementarily equivalent iff player II /zas 
a winning strategy for all n-E.F.-games between 3)10 and îRj, n G co. 

(b) Suppose \Aj | < fc, and af possesses a base of power < K, I G 2. 77iew 
3R0 s Slj iff there is a winning strategy for II in the K-E.F.-game between 3K0 

and » ! (L /iwite). 

REMARK. The E.F.-game described above approximates isomorphisms. 
One can design E.F.-games approximating other relations between models: e.g. 
"SK0 C I j " (i.e. 210 is a substructure of Ut, a0 the subspace topology), "2Io = 
21 j , oc0 coarser than ax " or "SK0 is a continuous and homomorphic image of 

III. Saturation. We call (21, a) (K-) saturated if there is a base j3 for a s.t. 

(21, j3) is (K-) saturated in the usual sense of L2. 

THEOREM, (a) Every L*-theory has a K-saturated model. 

(b) If U is a K-good ultrafilter on I and \L \ < K , then W/U is K-saturated 

((U,ot)I/U=(nI/U9(a
l/U))). 

(c) Two saturated, L*-elementarily equivalent models of the same cardi­

nality are isomorphic. 

(d) Two models are L*-elementarily equivalent iff they have isomorphic 

ultrapowers. 

IV. Definability. T \~t 0 means: 0 holds in all models of T. 
By either the methods of II or III we can prove the 

INTERPOLATION THEOREM . Assume \-t 0 —* \p and 0, i// G L*. Then 

there is a 6 G L* containing only nonlogical symbols which occur in both 0 
and \jj, s.t. \~t 0 —> 6 and \-t 0 —> \jj. 

REMARKS, (a) The analogue of Lyndon's interpolation theorem holds. 

(b) Beth's theorem follows as usual for Lf. 
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Define 0 to be universal if 0 becomes universal in the usual sense if we 

erase all set-quantifiers. We have the 

PRESERVATION THEOREM. Let T C Lt, 0, i// G L*. The following are 

equivalent: (a) For all T-models 1 0 D 1 7 , 1 0 (= 0 => I j |= i//. 
(b) 77zm? is a universal 6 e L' s.t. T\-t(/)—>d,T\~td-+\p. 

REMARK. There are syntactical characterisations of the Lt-sentences pre­
served by various other relations between models (e.g. the relations given in (II)). 

V. Decidability. The relation "x cannot be separated from y by disjoint 
closed neighbourhoods" can be arbitrary in T2 -spaces. So we have 

THEOREM (L = 0) . The theory of T2-spaces is undecidable. 

The countable T3-spaces have a base of clopen sets. Using this and the 
decidability of the monadic theory of countable trees we can prove 

THEOREM (L CONSISTS OF UNARY PREDICATES). The theory of T3-

spaces with a finite number of distinguished subsets is decidable. 

REMARK. The //-elementary types can be characterized by simple in­
variants, e.g. all T3-spaces without isolated points are elementarily equivalent. 
In fact this theory is "N0-categorical". 
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