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I. The language L. Let L, be the 2-sorted first order language appro-
priate for structures (2, a, €), where ¥ is a L-structure and « is a set of subsets
of 4. We call (U, o) topological if « is a topology. We call a formula of L,
topological if it is built up using the set quantifier 3X only in the form 31X (¢ €
X N\ ¢), X does not occur positively in ¢. (X occurs positively in ¢ if a free oc-
currence of X in ¢ is‘inside the scope of an even number of negation symbols.
Note. Primitive symbols are A, 71,3x,3X.) L? is defined as the set of topological
sentences of L, .!

LeMMA. (a) Define B = {Usls C B}. Then forall ¢ € L*, (U, B) |= ¢ iff
U, B) = ¢. (Le. ¢ is invariant in the sense of Garavaglia [1].)
(b) B is a topology iff (U, B) &= top, where top is the L*-sentence

Vx(AXAx € X)AVxVX(x EX —=VY(x €Y

—ZxEZAWYEZ—yE XAy EY)))).
In the sequel “model” means “topological model”.

CoROLLARY (see [1]).(a) T C L? has a model iff T U {top }is consistent
(in the 2-sorted predicate calculus of L,).

(b) The set of L¥-sentences true in all models is r.e.

(c) L? satisfies the compactness theorem: T has a model iff every finite
subset of T has a model.

(d) L? satisfies the downward Lowenheim-Skolem theorem (L countable):
If T has an infinite model, it has a “countable” model (U, @), i.e. A countable,
o having a countable base.

By the methods of the next section we can prove a Lindstrom-

THEOREM. Let L* be a language for topological structures extending L*
and satisfying the compactness theorem and the downward Lowenheim-Skolem
theorem. Then L* = L*.
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11 have seen, that Lt was first considered for topological spaces by T. A. McKee in
two articles in the Z. Math. Logik Grundlagen Math. 21 (1975), 405-408 and ibid. (1976).
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COROLLARY. ¢ € L, is invariant iff topk ¢ <—> ¢ fora y € L*.

So L? seems to be the natural language for topological structures.

REMARK. One can translate the (weaker) topological logics L(Q"), L(I™)
considered in [2], [3] into L*. “f continuous” and the separation axioms T, —
T; are expressible in L.

II. The Ehrenfeucht-Fraissé game for L?. There are two players, I and I,
for the v-E.F. game between the two models $; = (¥;, o;), i € 2. The kth
move is: I chooses i € 2, a; € A; and a neighbourhood N;‘ of a;‘. Then II
chooses a’f_,- € A, _; and a neighbourhood N¥_; of a¥_;. After v moves II has
won if {(ak, a¥)| <v}is a partial isomorphism between ¥, and U, and if for
all Nl?‘ chosen by I and all j <, a’l'_i IS N;‘_i =>ai.' ENik.

THEOREM. (a) M, and M, are L'-elementarily equivalent iff player 11 has
a winning strategy for all n-E.F.-games between ., and ?]Rl ,nE w.

(b) Suppose |A;| <k, and o; possesses a base of power < k,i € 2. Then

Mo = M, iff there is a winning strategy for 11 in the k-E.F.-game between N
and N, (L finite).

REMARK. The E.F.-game described above approximates isomorphisms.
One can design E.F.-games approximating other relations between models: e.g.
“Mo C My (ie. Uy is a substructure of U, , oy the subspace topology), “Uy =
U |, o coarser than a;” or “d, is a continuous and homomorphic image of

2
m,”.

II. Saturation. We call (2, a) (k-) saturated if there is a base § for a s.t.
(¥, ) is (k-) saturated in the usual sense of L, .

THEOREM. (a) Every L'-theory has a k-saturated model.

M) IfUisa K-gq(_)g ultrafilter on I and \L| < k, then M /U is k-saturated
(¥, /U = (WU, (o/U))).

(c) Two saturated, L*-elementarily equivalent models of the same cardi-
nality are isomorphic.

(d) Two models are L'-elementarily equivalent iff they have isomorphic
ultrapowers.

IV. Definability. T -, ¢ means: ¢ holds in all models of T.
By either the methods of II or III we can prove the

INTERPOLATION THEOREM . Assume t~, ¢ — Y and ¢, Y € L?. Then
there is a O € L* containing only nonlogical symbols which occur in both ¢
and Y,s.t. -, ¢ —> 0 and |-, 0 — Y.

REMARKS. (a) The analogue of Lyndon’s interpolation theorem holds.
(b) Beth’s theorem follows as usual for L*.
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Define ¢ to be universal if ¢ becomes universal in the usual sense if we
erase all set-quantifiers. We have the

PRESERVATION THEOREM. Let T C L%, ¢,y € L. The following are
equivalent: (a) For all T-models Ny D My, My o= M, = y.
(b) There is a universal 0 € L' s.t. T+, ¢ — 60, T+, 0 — .

REMARK. There are syntactical characterisations of the L’-sentences pre-
served by various other relations between models (e.g. the relations given in (I)).

V. Decidability. The relation “x cannot be separated from y by disjoint
closed neighbourhoods” can be arbitrary in T,-spaces. So we have

THEOREM (L =g&). The theory of T,-spaces is undecidable.

The countable T;-spaces have a base of clopen sets. Using this and the
decidability of the monadic theory of countable trees we can prove

THEOREM (L CONSISTS OF UNARY PREDICATES). The theory of T,-
spaces with a finite number of distinguished subsets is decidable.

REMARK. The L?-elementary types can be characterized by simple in-
variants, e.g. all T'3-spaces without isolated points are elementarily equivalent.
In fact this theory is “®-categorical”.
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