## A LANGUAGE FOR TOPOLOGICAL STRUCTURES WHICH SATISFIES A LINDSTRÖM-THEOREM

## BY M. ZIEGLER

## Communicated January 26, 1976

I. The language  $L^t$ . Let  $L_2$  be the 2-sorted first order language appropriate for structures  $(\mathfrak{A}, \alpha, \epsilon)$ , where  $\mathfrak{A}$  is a L-structure and  $\alpha$  is a set of subsets of A. We call  $(\mathfrak{A}, \alpha)$  topological if  $\alpha$  is a topology. We call a formula of  $L_2$  topological if it is built up using the set quantifier  $\exists X$  only in the form  $\exists X(t \in X \land \phi)$ , X does not occur positively in  $\phi$ . (X occurs positively in  $\phi$  if a free occurrence of X in  $\phi$  is inside the scope of an even number of negation symbols. Note. Primitive symbols are  $\wedge$ ,  $\neg$ ,  $\exists x$ ,  $\exists X$ .)  $L^t$  is defined as the set of topological sentences of  $L_2$ .

LEMMA. (a) Define  $\widetilde{\beta} = \{\bigcup s | s \subset \beta\}$ . Then for all  $\phi \in L^t$ ,  $(\mathfrak{A}, \beta) \models \phi$  iff  $(\mathfrak{A}, \widetilde{\beta}) \models \phi$ . (I.e.  $\phi$  is invariant in the sense of Garavaglia [1].)

(b)  $\widetilde{\beta}$  is a topology iff  $(\mathfrak{U}, \beta) \models \text{top}$ , where top is the  $L^t$ -sentence  $\forall x (\exists X \land x \in X) \land \forall x \forall X (x \in X \longrightarrow \forall Y (x \in Y))$ 

$$\rightarrow \exists Z (x \in Z \land \forall y (y \in Z \rightarrow y \in X \land y \in Y))).$$

In the sequel "model" means "topological model".

COROLLARY (see [1]). (a)  $T \subset L^t$  has a model iff  $T \cup \{top\}$  is consistent (in the 2-sorted predicate calculus of  $L_2$ ).

- (b) The set of  $L^t$ -sentences true in all models is r.e.
- (c)  $L^t$  satisfies the compactness theorem: T has a model iff every finite subset of T has a model.
- (d)  $L^t$  satisfies the downward Löwenheim-Skolem theorem (L countable): If T has an infinite model, it has a "countable" model  $(\mathfrak{U}, \alpha)$ , i.e. A countable,  $\alpha$  having a countable base.

By the methods of the next section we can prove a Lindström-

Theorem. Let  $L^*$  be a language for topological structures extending  $L^t$  and satisfying the compactness theorem and the downward Löwenheim-Skolem theorem. Then  $L^* = L^t$ .

AMS (MOS) subject classifications (1970). Primary 02B99, 02H99; Secondary 02G05, 54J05, 54D10.

 $<sup>^{1}</sup>$ I have seen, that  $L^{t}$  was first considered for topological spaces by T. A. McKee in two articles in the Z. Math. Logik Grundlagen Math. 21 (1975), 405-408 and ibid. (1976).

COROLLARY.  $\phi \in L_2$  is invariant iff top  $\vdash \phi \longleftrightarrow \psi$  for  $a \psi \in L^t$ .

So  $L^t$  seems to be the natural language for topological structures.

REMARK. One can translate the (weaker) topological logics  $L(Q^n)$ ,  $L(I^n)$  considered in [2], [3] into  $L^t$ . "f continuous" and the separation axioms  $T_0 - T_3$  are expressible in  $L^t$ .

II. The Ehrenfeucht-Fraissé game for  $L^t$ . There are two players, I and II, for the  $\nu$ -E.F. game between the two models  $\mathfrak{A}_i = (\mathfrak{A}_i, \alpha_i)$ ,  $i \in 2$ . The kth move is: I chooses  $i \in 2$ ,  $a_i \in A_i$  and a neighbourhood  $N_i^k$  of  $a_i^k$ . Then II chooses  $a_{1-i}^k \in A_{1-i}$  and a neighbourhood  $N_{1-i}^k$  of  $a_{1-i}^k$ . After  $\nu$  moves II has won if  $\{\langle a_0^k, a_1^k \rangle | < \nu \}$  is a partial isomorphism between  $\mathfrak{A}_0$  and  $\mathfrak{A}_1$  and if for all  $N_i^k$  chosen by I and all  $j < \nu$ ,  $a_{1-i}^j \in N_{1-i}^k \Rightarrow a_i^j \in N_i^k$ .

THEOREM. (a)  $\mathfrak{M}_0$  and  $\mathfrak{M}_1$  are  $L^t$ -elementarily equivalent iff player II has a winning strategy for all n-E.F.-games between  $\mathfrak{M}_0$  and  $\mathfrak{M}_1$ ,  $n \in \omega$ .

(b) Suppose  $|A_i| \leq \kappa$ , and  $\alpha_i$  possesses a base of power  $\leq \kappa$ ,  $i \in 2$ . Then  $\mathfrak{M}_0 \cong \mathfrak{M}_1$  iff there is a winning strategy for II in the  $\kappa$ -E.F.-game between  $\mathfrak{M}_0$  and  $\mathfrak{M}_1$  (L finite).

REMARK. The E.F.-game described above approximates isomorphisms. One can design E.F.-games approximating other relations between models: e.g. " $\mathbb{M}_0 \subset \mathbb{M}_1$ " (i.e.  $\mathbb{M}_0$  is a substructure of  $\mathbb{M}_1$ ,  $\alpha_0$  the subspace topology), " $\mathbb{M}_0 = \mathbb{M}_1$ ,  $\alpha_0$  coarser than  $\alpha_1$ " or " $\mathbb{M}_0$  is a continuous and homomorphic image of  $\mathbb{M}_1$ ".

III. Saturation. We call  $(\mathfrak{A}, \alpha)$   $(\kappa$ -) saturated if there is a base  $\beta$  for  $\alpha$  s.t.  $(\mathfrak{A}, \beta)$  is  $(\kappa$ -) saturated in the usual sense of  $L_2$ .

THEOREM. (a) Every  $L^t$ -theory has a  $\kappa$ -saturated model.

- (b) If U is a  $\kappa$ -good ultrafilter on I and  $|L| < \kappa$ , then  $\mathfrak{M}^I/U$  is  $\kappa$ -saturated  $((\mathfrak{U}, \alpha)^I/U = (\mathfrak{U}^I/U, (\alpha^{I/U})))$ .
- (c) Two saturated,  $L^t$ -elementarily equivalent models of the same cardinality are isomorphic.
- (d) Two models are  $L^t$ -elementarily equivalent iff they have isomorphic ultrapowers.
  - IV. **Definability**.  $T \vdash_t \phi$  means:  $\phi$  holds in all models of T. By either the methods of II or III we can prove the

INTERPOLATION THEOREM. Assume  $\vdash_t \phi \longrightarrow \psi$  and  $\phi, \psi \in L^t$ . Then there is a  $\theta \in L^t$  containing only nonlogical symbols which occur in both  $\phi$  and  $\psi$ , s.t.  $\vdash_t \phi \longrightarrow \theta$  and  $\vdash_t \theta \longrightarrow \psi$ .

REMARKS. (a) The analogue of Lyndon's interpolation theorem holds. (b) Beth's theorem follows as usual for  $L^t$ .

570 M. ZIEGLER

Define  $\phi$  to be universal if  $\phi$  becomes universal in the usual sense if we erase all set-quantifiers. We have the

PRESERVATION THEOREM. Let  $T \subset L^t$ ,  $\phi$ ,  $\psi \in L^t$ . The following are equivalent: (a) For all T-models  $\mathfrak{M}_0 \supset \mathfrak{M}_1$ ,  $\mathfrak{M}_0 \models \phi \Rightarrow \mathfrak{M}_1 \models \psi$ .

(b) There is a universal  $\theta \in L^t$  s.t.  $T \vdash_t \phi \longrightarrow \theta$ ,  $T \vdash_t \theta \longrightarrow \psi$ .

REMARK. There are syntactical characterisations of the  $L^t$ -sentences preserved by various other relations between models (e.g. the relations given in (II)).

V. Decidability. The relation "x cannot be separated from y by disjoint closed neighbourhoods" can be arbitrary in  $T_2$ -spaces. So we have

Theorem  $(L = \emptyset)$ . The theory of  $T_2$ -spaces is undecidable.

The countable  $T_3$ -spaces have a base of clopen sets. Using this and the decidability of the monadic theory of countable trees we can prove

Theorem (L consists of unary predicates). The theory of  $T_3$ -spaces with a finite number of distinguished subsets is decidable.

REMARK. The  $L^t$ -elementary types can be characterized by simple invariants, e.g. all  $T_3$ -spaces without isolated points are elementarily equivalent. In fact this theory is " $\aleph_0$ -categorical".

## REFERENCES

- S. Garavaglia, Completeness for topological languages, Notices Amer. Math. Soc. 22 (1975), p. A-473. Abstract # 75T-E36.
- 2. J. A. Makowsky, An extension of topological first order logic with a back and forth characterization of elementary equivalence, 1975 (preprint).
- 3. J. Sgro, Completeness theorems for topological models; Completeness theorems for product topologies and continuous functions, Thesis, Yale Univ., 1974. (to appear).

TU BERLIN, FB 3, HARDENBERGSTR. 4-5, 1000 BERLIN 12, GERMANY