ON STOPPING TIME DIRECTED CONVERGENCE

BY ARYEH DVORETZKY

Communicated by Alexandra Bellow, December 31, 1975

The main purpose of this note is to introduce the notion of \overline{S} -martingales, a certain modification of that of asymptotic martingales, the main justification of which is III.

1. S-convergence. Let (Ω, \mathcal{F}, P) be a probability; (\mathcal{F}_n) $(n=1,2,\ldots)$, a nondecreasing sequence of measurable σ -fields and (X_n) an adapted sequence of extended real-valued r.v. (random variables). (If the \mathcal{F}_n are not mentioned explicitly then any \mathcal{F}_n with the above properties will do; in particular, we may take \mathcal{F}_n to be the σ -field generated by X_1,\ldots,X_n .) Let $T=\{t\}$ be the family of bounded stopping times; i.e. the family of positive, bounded, integer-valued r.v. t with $t^{-1}(n) \in \mathcal{F}_n$ for all n. T is a directed set filtering to the right under the relation $t_1 \leq t_2$, i.e. $t_1(\omega) \leq t_2(\omega)$ a.s. (almost surely). The r.v. X_t for $t \in T$, is defined by $X_t(\omega) = X_{t(\omega)}(\omega)$.

DEFINITION. Let ϕ map X_t $(t \in T)$ into a topological space M. Then $(\phi(S_n))$ is said to be S-convergent—or stopping time directed convergent—(to Y) if the directed set $\phi(X_t)$ is convergent in the topology of M (to Y).

S-convergence implies ordinary convergence, but not vice-versa.

EXAMPLES. (1) ϕ the identity mapping, M the space of all extended real valued r.v. topologized by convergence in probability (for extended real valued r.v. this is interpreted as applied to the r.v. obtained through the mapping $x \rightarrow x/(1+|x|)$). We then speak of *S-convergence in probability*. In sharp distinction from the situation in ordinary convergence, we have

I. S-convergence in probability is equivalent to a.s. convergence.

The proof is immediate since there exist $t_1 < \cdots < t_n < \cdots \longrightarrow \infty$ with $X_{t_n} \stackrel{\text{a.s.}}{\longrightarrow} \limsup X_{t_n} = \limsup X_n$.

(2) (X_n) is said to be an *S-martingale* if the expectations (finite or not) EX_t are defined for all $t \in T$ and (EX_n) is *S*-convergent (to a finite or infinite number). If the limit is a finite number then (X_n) is called an *asymptotic martingale*.

The argument proving I yields

II. A uniformly bounded sequence of r.v. (X_n) is a.s. convergent iff it is an asymptotic martingale.

AMS (MOS) subject classifications (1970). Primary 60G40, 60G45; Secondary 28A65, 28A20.

This result is due to P. A. Meyer [5] where, apparently, stopping time directed convergence was first considered in this context. Asymptotic martingales were introduced by D. G. Austin, G. A. Edgar and A. Ionescu Tulcea [1] and their properties further studied and importance underlined by R. V. Chacon and L. Sucheston [3], G. A. Edgar and L. Sucheston [4] and A. Bellow [2].

2. \overline{S} -convergence. Let C^H $(0 \le H \le \infty)$ be defined by: $C^H(x) = x$ if $|x| \le H$ and $C^H(x) = \pm H$ otherwise, according to the sign of x.

DEFINITION. Let φ map uniformly bounded r.v. into the topological space M. Then $(\phi(X_n))$ is said to be \overline{S} -convergent if $\phi(C^HX_n)$ is S-convergent for every H.

In particular, (X_n) is said to be an \overline{S} -martingale if $(C^H X_n)$ is an asymptotic martingale for every H. \overline{S} -convergence in probability is defined as S-convergence in probability of $(C^H X_n)$ for every finite positive H.

From II we immediately have

III. A sequence of extended real-valued r.v. (X_n) is a.s. convergent iff it is an \overline{S} -martingale.

It follows (and can also be shown directly) that in defining \overline{S} -martingales it suffices to consider any unbounded set of H's. On the other hand, one can equivalently define \overline{S} -martingales by the requirement that $(f(X_n))$ is an asymptotic martingale for every bounded continuous function f from the extended real line into the real line.

We remark that

IV. The limit function in III is a.s. finite iff

$$\lim_{H \to \infty} \limsup_{n \to \infty} P[|X_n| > H] = 0$$

From III we have immediately

- V. (a) If (X_n) and (Y_n) are \overline{S} -martingales, then $(\min(X_n, Y_n))$ and $(\max(X_n, Y_n))$ are also \overline{S} -martingales.
- (b) A function f transforms every \overline{S} -martingale (X_n) into an \overline{S} -martingale $(f(X_n))$ iff it is continuous (on the extended real line).
- (c) If P' is a probability measure defined on F then every \overline{S} -martingale on (Ω, F, P) is an \overline{S} -martingale on (Ω, F, P') iff P' is absolutely continuous relative to P.
- 3. Further results. In [1] (see also [4], [2]) it was proved that an L_1 -bounded asymptotic martingale is a.s. convergent. This implies
 - VI. An L_1 -bounded asymptotic martingale is an \overline{S} -martingale.

This also follows directly from VII, which extends a result of [1].

VII. If (X_n) is an asymptotic martinglae then (X_n^+) and (X_n^-) are S-martingales.

To see this note that if $t' \ge t$ and we put t'' = t' on $[X_t \ge 0]$ and t'' = t otherwise, then $t'' \ge t$. Hence, if t is such that $EX_{t'} - EX_t \ge -\epsilon$ for all $t' \ge t$

t, it follows that $EX_{\star'}^+ - EX_{\star}^+ \ge EX_{\star''}^+ - EX_{\star}^+ \ge EX_{\star''}^- - EX_{\star} \ge -\epsilon$.

We remark that the conclusion of VII holds even for S-martingales which are not asymptotic martingales, provided the approach of EX_t to infinity is "semimonotone". In particular it holds for super- and sub-martingales (even not L_1 -bounded).

- 4. Generalizations. There are several possible ways of generalizing the above results. Thus (1) more general directed sets than sequences can be considered (see [4]). (2) Vector valued (and other) r.v. may be considered (see [3], [4], [2]).
- (3) Probability spaces can be replaced by σ -finite measure spaces. (4) Approximate (see [4]) S- and \overline{S} -martingales can be studied.

ACKNOWLEDGEMENTS. My interest in the subject was stimulated by the Colloquium lecture of Alexandra Bellow in Jerusalem mentioned in [2]. I am also indebted to here for illuminating discussions as well as for prompting me to write this note. I would like also to thank G. A. Edgar and L. Sucheston for making [4] available before publication.

REFERENCES

- 1. D. G. Austin, G. A. Edgar and A. Ionesco Tulcea, *Pointwise convergence in terms of expectations*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30 (1974), 17-26.
- 2. A. Bellow, Stability properties of the class of asymptotic martingales, Bull. Amer. Math. Soc. 82 (1976), 338-340.
- 3. R. V. Chacon and L. Sucheston, On convergence of vector-valued asymptotic martingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 33 (1975), 55-59.
- 4. G. A. Edgar and L. Sucheston, Amarts, a class of asymptotic martingales (Discrete parameters), J. Multivariate Anal. (to appear).
- 5. P. A. Meyer, *Probability and potentials*, Blaisdell, Waltham, Mass., 1966. MR 34 #5119.

HEBREW UNIVERSITY OF JERUSALEM, JERUSALEM, ISRAEL