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In this announcement an operator theoretic approach to singular perturba­
tion expansions for simple eigenvalues is outlined. Corresponding results hold 
for eigenvectors, eigenvalues of finite multiplicity, and spectral concentration 
near eigenvalues of finite multiplicity. 

We seek first and second order approximations for problems to which the 
regular perturbation method does not apply (cf. [2] ). First presented are the 
abstract singular perturbation expansions, followed by mention of some results 
for differential problems. Application of the abstract results to concrete problems 
is involved, but our framework makes Lions' method of correctors [3], as well as 
boundary layer techniques (cf. [4] ), applicable to eigenvalue problems. 

Let H be a complex Hubert space with inner product (v, w) and norm |u|. 
Let b(v, w) be a Hermitian symmetric bilinear form defined on a linear manifold 
D(b) which is dense in H, We assume that the quadratic form corresponding to 
b(v, w) has a positive lower bound, and is closed. Then D(b), with inner product 
b(v, w), is a Hubert space. Further let a(v, w) be a Hermitian symmetric bilinear 
form defined on a linear manifold D(a) which is dense in D(b), and assume that 
the quadratic form corresponding to a(v9 w) is nonnegative, and closed in D(b). 

Let B be the positive definite self adjoint operator in H defined by (Bv, w) 
= b(v, w) for all w G D(b), on D(B) = {v G D(b): w —• b(v, w) is continuous 
on D(b) in the topology induced by ƒƒ}. Similarly let A€, e > 0, be the positive 
definite selfadjoint operator in H defined by (A€v, w) = ea(p, w) + b(v, w), and 
A the nonnegative selfadjoint operator in D(b) defined by b(Av, w) = a(v, w). 

Assume that X is an isolated simple eigenvalue of B with corresponding 
eigenvector u normalized in H. Assume further that X is stable under the above 
perturbation, i.e., that for e sufficiently small the intersection of any isolating 
interval for X and the spectrum of A€ consists of a single simple eigenvalue Xe 

ofi4e, X e - > X a s e l 0 (cf. [2]). 
Now let r\ = (A~lu, u). It is easily shown that 77 = X"1 - eX"~2X'e, where 

X'e = i(A(eA + l)~lu9 u) and that eX'e - * 0 as e I 0 (cf. [1]). 

THEOREM 1. (i) Xe = X + 0(eX'e) as e ~> 0. 
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(ii) If there exists a Borel function ƒ: (0, °°) —• [1, °°) such that ƒ (p) —+ 

°° as n—+ °° and D(B) C D(f(A)), the inclusion being both algebraic and topo­

logical with the respective graph norms, then Xe = X + eX'e 4- o(eXg) as e I 0. 
(iii) If the hypothesis of (ii) is satisfied by ƒ (/x) = (M 4- l ) r where 0 < 

T < % then Xe = X 4- eX'e + 0 ( e 2 r + *X'e) as e I 0. 

Recall that if u E D((A 4- I)l/z) = <D(fl), the regular perturbation method 
applies to first order for Xe. Also observe that part (iii) of Theorem 1 may give 
more than the first order correction to Xe, depending on the number of terms in 
an asymptotic expansion of eX'e which are of lower order than e 2 r + 1Xç. One 
way to investigate the asymptotic behaviour of eX'e is to find K: (0, e0] —> (0, <*>), 
K(e) —* 0 as e I 0, and 0 =£ u E H such that 

(iv) |eA(eA + I)""1u ~ K(e)u\ = o(/c(e)) as e I 0, which implies that eX'e = 
K(e)X(w', u) 4- o(/c(e)) as e I 0. 

THEOREM 2. If there exist K, U for which (iv) holds, then 

(v) Xe = X4-eX'e-K
2(e)X(Sw', u) + o(K2(e)) as e I 0, 

vv/zere 5 w the bounded selfadjoint operator in H defined by Su = 0,S = 
5 (5 - X)-1 on {w}1. 

This provides a generalization of the second order regular perturbation 
formula. When (iv) holds the first order correction to u is -K(€)SU; but 
observe that (v) yields a classical asymptotic expansion of Xe through order 
/c2(e) only if eX'e can be expanded through this order. 

Theorems 1 and 2 apply to the usual higher derivative singular perturbations 
of differential eigenvalue problems (cf. [5], [4]). For such problems fc(e) = e2° 

where o is the supremum of those r for which the hypothesis of part (iii) of 
Theorem 1 holds (cf. [1]). Also, (iv) corresponds to finding the first correction 
in the outer expansion. 

EXAMPLE. We list explicit conclusions for a different type of singular 
perturbation problem on the interval [0, / ] . 

- / e ' + [ax~2 + V(x) + ex-2«]y€ = X^ e , 

^ e ( 0 ) = ^ e ( / ) = 0, 

where ' = d/dxt a> \,a> -V* and, for simplicity, V G C£ (0, /). By adding 
a multiple of the identity operator to both sides, this problem fits into our frame­
work with H = £2(0, /). The corresponding problem on (0, °°) would be a hard 
core potential perturbation of the radial equation of quantum mechanics. With 
|3 = l/2(a ~ 1) and 7 = 0(1 + 4a)1/2

9 part (iii) of Theorem 1 yields the first order 
results: 
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* e ~ 

X + X,e7 

| X + Xjeloge 

1 X + Xje 

[x + x^2" 

if 0 < 7 < 1 and 7 < 2/3, 

if 7 = 1 and 1 < 2/3, 

if 7 > 1 and 1 < 2/3, 

otherwise, 

where \ t is independent of e. Second order results follow from Theorem 2 if 
0 < 7 < 1 and 7 < 2/3, or if 7 > 1 and 2 < 7 + 2/3. In the other cases, i.e., 
0 < 7 < 1 and 7 > 2/3, or 7 > 1 and 2 > 7 4- 2/3, while (iv) remains unverified, 
second order results are obtainable from part (iii) of Theorem 1. 
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