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As a sequel to a previous announcement [3], the author can now give a 
complete classification up to homotopy type of which spaces can occur as fixed 
point sets of smooth actions of a given compact Lie group on disks. The result 
is contained in Theorems 1 to 3 below. For a group G, G0 denotes its identity 
component. 

THEOREM 1. Let G be a compact Lie group, and F a finite CW complex. 
Then there exists a smooth action of G on a disk with fixed point set having the 
homotopy type of F if and only if: 

1. G s Tn {n > 1): F is Z-acyclic; 
2. G0 a torus and \G/G0\ = pa (p prime, a> 1): F is Zp-acyclic, 
3. G0 not a torus or G/G0 not of prime power order: x(F) =.1 (mod nG) 

for some fixed integer nG. 

In order to describe the calculations of nG, some classes of finite groups 
are defined, as in [3] and [4]. G1 denotes the class of all G with normal sub
group P of prime power order, such that G/P is cyclic. For q prime, GP denotes 
the class of all G with normal subgroup H E G1 of g-power index. Then one gets 

THEOREM 2. 1. If G0 is not a torus, then nG = 1. 
2. If G0 is a torus, then nG = nG ,G . 
3. If G is finite, then nG = 0 if and only ifGeG1;ifG£G1 then for 

any prime q, q\nG if and only if G G G*7. 

In Theorem 1, the necessity of the conditions in (1) and (2) follow from 
standard Smith theory. Sufficiency follows in (2) from Jones [2], and in (1) is 
trivial (G*Fis contractible and can be thickened up to a disk action by Theorem 
6 of [4]). 

For finite G, the existence of nG and the calculations in Theorem 2, part 3, 
were proven in [4]. Furthermore, if G0 is a torus and G^G0> then F clearly 
has the homotopy type of the fixed point set of a disk action of G if and only 
if it does the same for G/G0, so nG = nG/G . The case where G0 is nontoral 
will be dealt with below; the above theorems say that any finite homotopy type 
can occur as fixed point set for such G. 

The following result, completing the calculation of nG, was obtained in 
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Theorem 4 of [5] by studying the projective obstruction yG(F) first introduced 
in [4]. 

THEOREM 3. For any finite group G, nG = 4 if and only if: 

1. G is a semidirect product 0 —>Zn —• G —• Z k —• 0 (n odd) given 

by an automorphism a G Aut(Z„). 

2. G £ G1, but the subgroup of index 2 is in G1. 
3. Letting a also denote the induced automorphism ofZÇn (the ring gener

ated by the nth roots of unity), there is no unit u G (Zfw)* such that oc(u) = - u. 

Otherwise, nG equals 0, 1 or a product of distinct primes. 

Groups fulfilling conditions 1-3 do actually exist, the smallest being given 
by (a, b: a15 = b4 = e, bab-1 = a2). 

It remains to describe the case of groups with nontoral identity component; 
by Bredon's construction [1, §1.8] it is enough to construct a fixed point free 
action of any such group on a disk. The following theorem provides some very 
specific examples of such actions. The concept of a family of subgroups is used, 
as defined by torn Dieck. 

THEOREM 4. Let G be a compact Lie group, and V a nonempty family of 

subgroups. Then there exists a smooth action of G on a disk D such that LP is 

a disk for H G F and empty for H 6É F, if and only if: 

1. For any pair of subgroups H <\K in G, for which KlH has prime order, 

either both H and K are in F or neither is. 

2. Vis closed in the space of closed subgroups of G with the Hausdorff 

topology. 

In particular, the family of subgroups H such that H0 is a torus and H/H0 

solvable meets these conditions. 
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