
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 82, Number 1, January 1976 

GENERALIZED ZETA-FUNCTIONS 

FOR AXIOM A BASIC SETS 

BY D. RUELLE 

Communicated October 15, 1975 

Let X be a set, ƒ : X \—> X a map, <p: X \—> C a complex-valued function. 
We write formally 

^(^=exp[-f: i z "n */**) 
L n=l n CGFixf" k = 0 J 

Taking if constant, i.e. replacing <p by z G C, we can interpret l/D(z) as a zeta-
function proved to be rational for Axiom A diffeomorphisms by Guckenheimer 
and Manning [6]. 

Similarly, if ( ƒ *) is a flow on X, we write formally 

where the product extends over the periodic orbits 7 of the flow, X(7) is the 
prime period of 7 and x a point of 7. 

In this note we indicate analyticity properties of A —• D(eA) or A —• d(A) 
for diffeomorphisms or flows satisfying Smale's Axiom A, assuming only that A 
is Holder continuous. Our results hold in particular for Anosov diffeomorphisms 
and flows, and when A is Cl. Stronger properties of meromorphy hold under 
suitable assumptions of real-analyticity and will be published elsewhere by P. 
Cartier and the author. 

Let A be a basic set for a C1 diffeomorphisms or flow satisfying Smale's 
Axiom A (see [13]). Choosing a Riemann metric d, and a G (0, 1) we let Ca 

be the Banach space of real Holder continuous functions of exponent a, with the 
norm 

( \A(y)-A(x)\ ) 
\\A\\a = sup {1,4001 + 77, 7Z—'x, ye A and* *y> 

I (d(x, y))a ) 
We denote by CQ the corresponding space of complex functions. 

1. THEOREM. Let the Axiom A diffeomorphism f restricted to the basic 

set A be topologically mixing. We denote by P(A) the {topological) pressure of a 

real continuous function A on A (see [8] , [14], [4] ). There is a continuous 

real function R on CQ satisfying 
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R(A)>exp[-P(ReA)] > O, 

R(A + c) = e-ReCR(A) when cGC 

and such that 
(a) if A G Cc» the following power series in z, 

r oo rn m-i 1 
D(zeA) = exp - £ — Z *xp £ ^( /**> 

L w = l m *GFix / m fc = 0 J 

converges for \z\ < R(A). The function A h-• D ^ ) w analytic in {A E CQ'. 

R(A)>1}. 

(b) If A G C<\ tf^w # (4 ) > exp [-P(A)] ,andz v-* D(zeA) has only one 

zero in {z: \z\< R(A)}. This zero is simple and located at exp [ - P(A)] • 

We shall also write Pp Rp D^ instead of P, R, D, to indicate the dependence 

on/ . 
We outline the proof of Theorem 1. First suppose that (A, / ) is a sub-

shift of finite type (see [13]). Then the theorem can be proved by the "transfer 
matrix" method of statistical mechanics (see [7], [1], [12], [9], [10]). The 
general case reduces to that one: using a Markov partition for A (see [11], [2]) 
one can, by a combinatorial lemma of Manning [6], write 

Df(ze*) = n [DT(zeA°"<))s<. 
i<EI l 

In this formula the index set / is finite, s( = ± 1, the rt are shifts acting on 
spaces Î2j and the -ni : Q^ H* A are Holder continuous maps such that IT ft = 
fiTj. Furthermore there is an index 1 G ƒ such that 5 2 = 4 - 1 and 

[TTX defines the symbolic dynamics associated with the Markov partition; therefore 
Pj — PT ° IT1 (see for instance [4] ). If / ¥= 1, TT( Ü. ^ A and therefore the 

pressure of / restricted to irt Q,t i$<Pf. This gives bounds on /-periodic points 
in 7TjS2f, and therefore on r-periodic points in Sli9 implying PT . ° n1 > PT ° 

77 ]̂. The conditions of the theorem are satisfied if we take 

RJA) = mini RT (A ° 7^), min exp(-P T (Re A o n))\ . 

COROLLARY. P is a real-analytic function on Ca ; ep(<A * is the radius of 
convergence of the series 

00 m ra — 1 

Z— Z « P S A(fx) 
m = l m x<EKm fc = 0 
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where Km consists of the f periodic points of prime period m. 

2. THEOREM . Let h be a basic set for an Axiom A flow ( ƒ*). We denote by 
P(A) the topological pressure of a real continuous function A on A (see [5] ). 
There is a continuous real function r> 0 on CQ such that: 

(a) if A G CQ, the product 

d(A - Ü) = n [* ~ exp ƒ o(7>(^( f\) - ") * ] 

is convergent for Re u > P(Re A) and extends to an analytic function of u for 
I u - P(RQ A)\ < r(A). The function d is analytic in {A EC01: P(Re A) < r(A)}\ 

(b) If A G Ca, then r(A) > 0, and u I—> d(A - ü) has only one zero in 
{u: Re u > P(A) or \u - P(A)\ < r(A)}. This zero is simple and located at P(A). 

The proof is based on a technique of counting periodic orbits due to 
Bowen [3, §5]. 

COROLLARY. P is a real-analytic function on Ca; P(A) is the abscissa of 
convergence of the Dirichlet series 2,y exp f^y\A( ffxy) - u) dt. 

REMARK. The functions z \-+D(zeA) of Theorem 1 and u h-> d(A - u) 
of Theorem 2 do not in general extend to meromorphic functions in the whole 
complex plane. Counterexamples have been constructed by G. Gallavotti (private 
communication). 
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ERRATUM, VOLUME 81 

On p. 823 of the September 1975 Bulletin the name of Robert L. Anderson 

was inadvertently included as a panel member for the AMS-MAA Committee on the 

Training of Graduate Students to Teach. He should have been listed as a panel 

member for the AMS Committee on Employment and Educational Policy discussion 

on "Seeking employment outside academia: Views from some who have recently 

succeeded". 
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