THE TOTAL CURVATURE OF KNOTTED SPHERES

BY DAN SUNDAY

Communicated December 2, 1974

Chern and Lashof [1] proved several inequalities concerning the total curvature of an immersed manifold. Their second result is a weak generalization of the Fary-Milnor theorem [2], [5] for closed space curves. In this paper, a stronger result (Corollary 1), the complete homotopy extension, is stated and proved. I would like to thank Bill Pohl for conversations surrounding the formulation and proof of this result.
I. Background. Let $x: M^{n} \rightarrow E^{n+N}$ be a C^{∞}-immersion into Euclidean space of dimension $n+N(N>0)$; and B_{ν} be the bundle of unit normal vectors of $x\left(M^{n}\right)$. A point of B_{ν} is a pair $(p, \nu(p))$, where $\nu(p)$ is a unit normal vector to $x\left(M^{n}\right)$ at $x(p)$. The map $\bar{\nu}: B_{\nu} \rightarrow S_{0}^{n+N-1}$, into the unit sphere of E^{n+N}, is defined by $\bar{\nu}(p, \nu(p))=\nu(p)$.

The Lipschitz-Killing curvature [1], $G(p, \nu)$ at $\nu(p)$, is then given by the $\bar{\nu}$ ratio of corresponding volume elements in S_{0}^{n+N-1} and B_{ν}. The total curvature of M^{n} at p is $K^{*}(p)=\int|G(p, \nu)| d \sigma$, the integral being taken over the sphere of unit normal vectors at $x(p)$. The total curvature of M^{n} is given by $K^{*}=K^{*}(M)$ $=\int_{p \in M} K^{*}(p) d V$.

The first two Chern-Lashof theorems can be stated as: Given M^{n} compact without boundary, and $c(m)$ the area of the unit hypersphere $S_{0}^{m} \subset E^{m+1}$, then:

Corollary 1. $K^{*}(M) \geqslant 2 c(n+N-1)$.
Corollary 2. If $K^{*}(M)<3 c(n+N-1)$, then M is homeomorphic to S^{n}.
The essential argument of their proof can be summarized as a lemma.
Lemma 1. If, for almost all $v_{0} \in S_{0}^{n+N-1}$, the height function $\left\langle v_{0},-\right\rangle$: $x(M) \rightarrow R$ has at least k distinct critical points, then $K^{*}(M) \geqslant k c(n+N-1)$.

Their method is an adaptation of the technique used by Fenchel [3]. This fact suggested that Corollary 2 is a weak generalization of Fary-Milnor.
II. The main result. In this section, a curvature inequality is given which distinguishes between different knottings of S^{n}. The method, based on Chern-Lashof, takes off from a remark of Fox [4] in which P. L. approximations yield the corresponding S^{1} result.

[^0]For simplicity of presentation, attention is restricted to knotted spheres; that is, $M^{n}=S^{n}$ and codimension $N=2$. Recall, for a mapping $x: S^{n} \rightarrow$ E^{n+2}, the group of the map is $\pi(x)=\pi_{1}\left[E^{n+2}-x\left(S^{n}\right)\right]$.

Definition 1. $g(x)=$ the minimal number of generators needed to present $\pi(x)$.

Theorem I. $K^{*}\left(S^{n}\right) \geqslant 2 g(x) c(n+1)$.
Corollary 1. If $K^{*}\left(S^{n}\right)<4 c(n+1)$, then $\pi(x)=Z$.
The corollary follows trivially since any $\pi(x)$ has Z as a subgroup. Theorem I is a consequence of Lemma 1 combined with the obvious.

Proposition 1. For almost all $v_{0} \in S_{0}^{n+1}$, the height function $\left\langle v_{0},-\right\rangle$: $x\left(S^{n}\right) \rightarrow R$ has at least $2 g(x)$ distinct critical points.

Proof. Since we only need to account for an open dense subset of the v_{0} 's, fix a height $\left\langle v_{0},-\right\rangle$ which is Morse. Choose a basepoint, *, which is "higher" than $x\left(S^{n}\right)$. The proposition is shown by constructing a canonical set of generators for $\pi\left(x,{ }^{*}\right)$, and deforming an arbitrary loop, $\gamma \in \pi\left(x,{ }^{*}\right)$, into a sum of these. The deformation is first described. The required generating set will be obvious at the outcome.

Since * is higher than $x\left(S^{n}\right)$, assume that the loop γ is strictly lower than *. Now, define a lifting-homotopy as a homotopy $H(x, t)$ which is always moving to higher levels, that is one where $\left\langle v_{0}, H(x, t)\right\rangle$ is nondecreasing in t for all fixed x in the loop parametrization. The problem involved is to determine the obstructions in $x\left(S^{n}\right)$ preventing γ from being pulled up all the way. Clearly, any such phenomenon will be local. The crucial observation is that γ can only be "caught" on maximums of $\left\langle v_{0},-\right\rangle: x\left(S^{n}\right) \longrightarrow R$.

Take a collection of open collared balls, $U_{i} \subset W_{i}$, in E^{n+2} such that: (1) $\left\{U_{i}\right\}$ is a finite covering of a simply-connected volume enclosing $x\left(S^{n}\right)$; (2) each critical point p is contained in only one ball W_{i}; and (3) there are Morse-coordinates for ($W_{i} \cap x\left(S^{n}\right)$) whose axes are strictly monotonic w.r.t $\left\langle v_{0},-\right\rangle$. Clearly, any part of γ lying in a U_{i} not containing a critical point can be lifted out of the ball. This means that attention can be focused on the U_{1}, \ldots, U_{k} containing p_{1}, \ldots, p_{k}.

Now, suppose that p_{j} is not a maximum. Then the height function is increasing on at least one Morse-axis, and the piece of $x\left(S^{n}\right)$ locally obstructing γ has at least codim 3. There are index $\left(p_{j}\right)>0$ degrees of freedom with which to translate a segment of γ and lift it into the collar $\left(W_{j}-U_{j}\right)$ such that it lies above $U_{j} \cap x\left(S^{n}\right)$. After a finite number of such movements, γ will only be obstructed by balls containing maximums.

Next, assign a unique 'canonical' element of $\pi(x)$ to each maximum. For p_{j} a maximum, fix a loop γ_{j} which passes under p_{j} only once. This can be ar-
ranged (inside W_{j}) by adding a lower hemisphere to $U_{j} \cap x\left(S^{n}\right)$, and taking γ_{j} as a generator which leaves W_{j} through the north pole and is increasing till *. Any segments of γ stuck in U_{j} can be lined up (inside W_{j}) with γ_{j}. The rest of the loop goes up and away. Hence, the collection $\left\{\gamma_{j}\right\}$ is a set of generators for $\pi(x)$.

Summarizing, any $\left\langle v_{0},-\right\rangle$ has at least $g(x)$ maximums. Next, if $C_{i}=$ the number of critical points of index i, then the Morse equality gives: (1) for n odd, $\Sigma_{i=1}^{n}(-1)^{i+1} C_{i}=C_{0} \geqslant g(x)$, and there are at least $g(x)$ critical points other than maximums; (2) for n even, there is at least one minimum, hence: $\Sigma_{i=1}^{n=1}(-1)^{i+1} C_{i}=C_{0}+C_{n}-2$, and there are at least $(g(x)-1)$ critical points other than maximums and minimums. In either case, the proof is complete.

BIBLIOGRAPHY

1. S. Chern and R. K. Lashof, On the total curvature of immersed manifolds, Amer. J. Math. 79 (1957), 306-318. MR 18, 927.
2. I. Fáry, Sur la courbure totale d'une courbe gauche faisant un noeud, Bull. Soc. Math. France 77 (1949), 128-138. MR 11, 393
3. W. Fenchel, On the differential geometry of closed space curves, Bull. Amer. Math. Soc. 57 (1951), 44-54. MR 12, 634.
4. R. H. Fox, On the total curvature of some tame knots, Ann. of Math. (2) 52 (1950), 258-260. MR 12, 273.
5. J. W. Milnor, On the total curvature of knots, Ann. of Math. (2) 52 (1950), 248257. MR 12, 273.

DEPARTMENT OF PHYSIOLOGY AND ANATOMY, UNIVERSITY OF CALIFORNIA, BER KELY, CALIFORNIA 94720

[^0]: AMS (MOS) subject classifications (1970). Primary 53C65; Secondary 57C45, 57D40.
 Key words and phrases. Fary-Milnor theorem, normal bundle, Gauss map, knot group, Morse equality.

