A DIRECTION OF BIFURCATION FORMULA IN THE THEORY OF THE IMMUNE RESPONSE¹

BY GEORGE H. PIMBLEY, JR.

Communicated by A. H. Householder, September 7, 1975

In previous work [1], I derived by biological reasoning and mathematical reduction the following system, attributable to G. I. Bell:

(1a)
$$du/ds = u [\lambda_1 + k\lambda_1 u - k(\alpha_1 - \lambda_1)v + kn\lambda_1 w],$$

(1b)
$$dv/ds = \beta \{v[-\lambda_2 - k(\alpha_2 + \lambda_2)u - k\lambda_2v - kn\lambda_2w] + k\gamma uw\},\$$

(1c)
$$dw/ds = w[-\lambda_3 + k(\alpha_3 - \lambda_3)u - k\lambda_3v - kn\lambda_3w - (k\alpha_3/\theta)uw].$$

Equations (1) simulate the immune response of an organism to antigen invasion. The dependent variables u, v, w are, respectively the concentrations of antigens, antibodies, and antibody-producing cells. The meanings of all parameters and constants are found in [1, pp. 93–96].

Equations (1) have two nontrivial rest points. The one nearest the origin, (u_f, v_f, w_f) , is stable or unstable according to whether $\beta > \beta_c$ or $\beta < \beta_c$, where $\beta_c > 0$ is a critical value of the parameter β in equation (1b). It is shown [1, Theorem 1] that at $\beta = \beta_c$, a continuous family of periodic solutions bifurcates from (u_f, v_f, w_f) . I was able to obtain a direction of bifurcation formula only in the special case where $\lambda_3 = 0$. Namely, periodic solutions bifurcate to the left (right) of β_c , and are stable (unstable) if

(2)
$$\beta_c > (\alpha_1 - \lambda_1)\lambda_1/((\alpha_1 - \lambda_1)(\alpha_2 + \lambda_2) + 2\lambda_1\lambda_2), \quad (<).$$

Herein I announce the development of a general formula for direction of bifurcation in equations (1), which approaches condition (2) as $\lambda_3 \rightarrow 0$. An analytic direction of bifurcation formula will be important in developing the global theory of these bifurcated families of periodic solutions, and in ascribing possible biomedical implications. I describe the new formula.

First we substitute $u = u_f + u^0$, $v = v_f + v^0$, $w = w_f + w^0$ into equations (1), and thus obtain equations centered at (u_f, v_f, w_f) . Then we let A_{β_c} be the matrix of the linear part of these centered DE's, with $\beta = \beta_c$. The matrix A_{β_c} has the three linearly independent eigenvectors represented symbolically as

$$(3) \qquad (\xi_1,\eta_1,\zeta_1), \quad (\overline{\xi}_1,\overline{\eta}_1,\overline{\zeta}_1), \quad (\xi,\eta,\zeta).$$

AMS (MOS) subject classifications (1970). Primary 92A05; Secondary 34C05.

¹Work performed under the auspices of the U. S. Energy Research and Development Administration.

Equations (1) also have an invariant surface passing through (u_f, v_f, w_f) , represented as follows:

(4)
$$z = \phi(x, y) = a_{20}x^2 + a_{11}xy + a_{02}y^2 + o(x^2 + y^2),$$

where x, y, z are new dependent variables obtained from (u^0, v^0, w^0) through a principal axis transformation.

We must define the following quantities:

$$E = is_{12}^{-1}\beta_c\lambda_2 n + is_{13}^{-1}\lambda_3,$$

$$F = -is_{12}^{-1}\beta_c\gamma - is_{11}^{-1}\lambda_1 n - s_{13}^{-1}(\alpha_3 - \lambda_3 - (2\alpha_3/\theta)w_f),$$

$$G = -is_{11}^{-1}\lambda_1, \quad H = is_{13}^{-1}(n\lambda_3 + (\alpha_3/\theta)v_f), \quad I = is_{13}^{-1}\alpha_3/\theta,$$

 $C = i s_{12}^{-1} \beta_c \lambda_2, \qquad D = i s_{12}^{-1} \beta_c (\alpha_2 + \lambda_2) + i s_{11}^{-1} (\alpha_1 - \lambda_1),$

where

$$s_{11}^{-1} = \frac{\zeta \overline{\eta}_1 - \overline{\zeta}_1 \eta}{\Delta}, \quad s_{12}^{-1} = \frac{-\zeta \overline{\xi}_1 + \overline{\zeta}_1 \xi}{\Delta}, \quad s_{13}^{-1} = \frac{\eta \overline{\xi}_1 - \overline{\eta}_1 \xi}{\Delta}$$

with

$$\Delta = 2i[\xi \operatorname{Im}(\eta_1 \overline{\xi}_1) - \eta \operatorname{Im}(\xi_1 \overline{\xi}_1) + \zeta_1 \operatorname{Im}(\xi_1 \overline{\eta}_1)].$$

We make the realistic assumption that $\alpha_1 > \lambda_1, \alpha_3 > \lambda_3$.

Also we need the constant $l = \sqrt{\text{trace } A_{\beta_c}^c}$ where $A_{\beta_c}^c$ is the first compound of the matrix A_{β_c} .

Using the constants defined in (4), I put forward the following direction of bifurcation criterion: Define

$$\kappa = \frac{1}{l} \operatorname{Re} \left\{ i(a_{20} - a_{02} + ia_{11}) [2\eta \overline{\eta}_1 C + (\xi \overline{\eta}_1 + \eta \overline{\xi}_1)D + (\eta \overline{\xi}_1 + \xi \overline{\eta}_1)E + (\xi \overline{\xi}_1 + \xi \overline{\xi}_1)F + 2\xi \overline{\xi}_1 G + 2\xi \overline{\xi}_1 H \right] \\ + 2i(a_{20} + a_{02}) [2\eta \eta_1 C + (\xi \eta_1 + \eta \xi_1)D + (\eta \xi_1 + \xi \eta_1)E + (\xi \xi_1 + \xi \xi_1)F + 2\xi \xi_1 G + 2\xi \xi_1 H] \\ + i\xi_1 \xi_1^2 I + 2i\xi_1 |\xi_1|^2 I \}$$
(6)

$$+ \frac{2}{l^2} \operatorname{Re} \{ -(i/2) [2|\eta_1|^2 \overline{C} + (\xi_1 \overline{\eta}_1 + \overline{\xi}_1 \eta_1) \overline{D} + (\eta_1 \overline{\xi}_1 + \overline{\eta}_1 \xi_1) \overline{E} \\ + (\xi_1 \overline{\xi}_1 + \overline{\xi}_1 \xi_1) \overline{F} + 2|\xi_1|^2 \overline{G} + 2|\xi_1|^2 H] \\ \times [\overline{\eta}_1^2 \overline{C} + \overline{\xi}_1 \overline{\eta}_1 \overline{D} + \overline{\eta}_1 \overline{\xi}_1 \overline{E} + \overline{\xi}_1 \overline{\xi}_1 \overline{F} + \xi_1^2 \overline{G} + \overline{\xi}_1^2 \overline{H}] \}.$$

The criterion is as follows: If κ is negative (positive), then the bifurcation periodic solutions of equations (1) exist in a left (right) neighborhood of $\beta = \beta_c$, and are stable (unstable). As can be seen in (5), the quantities C, D, E, F are linear in the critical value β_c . Therefore formula (6) gives a representation that is a quadratic function of β_c . Moreover it turns out that the quadratic equation $\kappa = 0$ has a largest positive root when $\lambda_3 \ge 0$. We call this root β_{cc} .

Then the criterion for direction of bifurcation can be interpreted as follows: If $\beta_c > \beta_{cc}$, (<), the bifurcated periodic solutions emanating from $\beta = \beta_c$ exist in a left (right) interval of β_c and are stable (unstable).

The quantity on the right in inequality (2) is, in fact, the greatest positive root of $\kappa = 0$ when $\lambda_3 = 0$.

The proof utilizes the focal point-saddle point type of analysis that goes back to Poincaré [2, pp. 167-181].

REFERENCES

 G. H. Pimbley, Jr., Periodic solutions of third order predator-prey equations simulating an immune response, Arch. Rational Mech. Anal. 55 (1974), 93-123.
 H. Poincaré, Collected works. Vol. I, Gauthier-Villars, Paris, 1951.

THEORETICAL DIVISION, UNIVERSITY OF CALIFORNIA, LOS ALAMOS SCI-ENTIFIC LABORATORY, LOS ALAMOS, NEW MEXICO 87545