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1. Introduction. The invariance principle of Birman and Kato(see e.g. [5]) 
states that, for simple scattering systems with short-range potentials, the wave op­
erator limits 

(1) a±((KH2l<K^i))= s-lim eWO^V-WCtfi)/^ 
t >>±oo 

are independent of <j> for a wide class of functions, and equal, respectively, the 
wave operators 

(2) n±(H2,Ht)^ s-lim eitH2e-
itHiPx. 

t >-±oo 

Kato first proved the invariance under the assumption that H2 ~ Hx is a trace-
class operator. It has since been proved under some alternative assumptions on 
Hx and#2 (see e.g. [4], [6]). 

For other scattering systems, such as scattering with long-range potentials, 
the limits (1) and (2) may not exist; however, certain modified wave operators 
(see (3) and (4) below) may exist [1], [3]. An invariance principle for modified 
wave operators has been proved by Matveev [6], [7] and Sakhnovich [8] under 
certain rate-of-convergence assumptions. However, these assumptions are shown 
to be satisfied only for a class of short-range potentials [6, Theorem 2]. 

In this note we announce the result that the invariance principle of scatter­
ing theory is valid in practically all situations in which (possibly modified) time-
dependent wave operators are known to exist. 

2. Notation. Let Hk be self adjoint operators on separable Hubert spaces 
tfk, k = 1, 2. Let Px denote the orthogonal projection of Hi onto the space 
Hi >ac of absolute continuity for H1. Let A be some closed and bounded interval 
of the real axis R, and let Et(A) be the corresponding spectral projection of the 
operator Hx. Let Vt be the dense subset of vectors u G H l a c with III will < <», 
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where III will is defined as in [5, p. 542]. Let ƒ be a bounded identification 
operator from Hi to H2 which maps the domain of Hx into the domain of H2. 

Let U(i) be a uniformly bounded operator-valued function of t, which 
commutes with Hx for all t, and for \t\ sufficiently large is invertible and satis­
fies 

s-lim lTl(i)U(t + s) = I 
t—>±°° 

for all s. For example, U(t) may be the long-range modification operators intro­
duced in [1], [3]. 

Local modified wave operators w£ are defined by 

(3) H f = s-lim JMiJe-'tBiUQWiiAyPi, 
t—>±°° 

whenever these limits exist. 
DEFINITION. The real-valued function 0 is said to be a Kato function if R 

can be divided into a finite number of subintervals in such a way that, in each 
open subinterval, 0 is differentiable with 0' continuous, locally of bounded vari­
ation, and positive [5, Lemma X—4.6]. 

Let 

Ô0(O s i ƒ_-_ R{tt s)e-isH1 u(s)dSf 

where R(t, s) s f^ ^ - ' ^ ^ ( i f l t f t j , and KA(v) is a smooth real-valued 
function of compact support equal to unity on A. 

Define 

(4) w£(4tH2), 0(17,); fi,) = s-lim e ^ ^ V ô ^ W • 
t * ± od 

3. Main results. 
THEOREM (INVARIANCE PRINCIPLE). Let 0 be a Kato function, and sup­

pose there is a dense subset V of Ex{ù)Hli2iC n V1 with the property that for 
every u E V there exists a r > 0 such that 

L(t)u s [(p2J-JHiye-itHW(t)-Je-'tHWÏt)]u 

is defined and strongly continuous on RT = {t E R: Ifl > r}, 0«<2 

(5) HL(0«ll = O(IH"1"e) ast-^>±°oforsomee>0. 

Then the wave operators W± and W^(0(#2), ^Hx)\ Q^) exist, and are, respect­
ively, equal 

REMARK. The closed bounded interval A assures that the integral defining 
Q^(f) converges. In situations, such as short-range scattering, where Q^if) does 
not depend on A, then a global version (^(A) = /) of our theorem is valid. 
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The proof of the above theorem relies upon the following two lemmas. 

LEMMA 1. Suppose that the Hilbert-space-valued function h(s) and its 
strong derivative n(s) are strongly continuous and satisfy: 

(i) \\h(s)\\-^ 0 as Isl—•«>, 
(ii) \\h\s)\\ G LX(R) n L2(R), and 

(in) lj|aIIÂ'(0ll e LxQOfor some a (0 < a < 1). 
Then h(s) is the Fourier transform of a Bochner integrable function. 

LEMMA 2. If <p is a Kato function and h(s) is the strong Fourier transform 
of a Bochner integrable function, then 

s-lim f°° R(tt syisHih(s)ds = 0. 
t • loo J - ° ° 

4. Consequences. Existence of time-dependent wave operators is normally 
established by proving an estimate of the form (5) for a particular choice of Hv 

H2, J, and U(t). Our theorem gives the invariance in all of these situations. 
These include, for example, the cases of single or multi-channel scattering with 
either short or long-range potentials, classical scattering, certain relativistic scat­
tering, and even scattering for certain rapidly oscillating potentials which are 
possibly unbounded at infinity. 

More general results, proofs, and applications will appear elsewhere [2]. 

REFERENCES 

1. V. S. Buslaev and V. B. Matveev, Wave operators for the Schrödinger equation 
with a slowly decreasing potential, Theor. Math. Phys. 2 (1970), 266—274 (translation). 

2. C. Chandler and A. G. Gibson, Invariance principle for scattering with long-range 
{and other) potentials, Indiana Univ. Math. J. (to appear). 

3. J. D. Dollard, Asymptotic convergence and the Coulomb interaction, J. Mathema­
tical Phys. 5 (1964), 729-738. MR 29 #921. 

4. J. A. Donaldson, A. G. Gibson and R. Hersh, On the invariance principle of scat­
tering theory, J. Functional Analysis 14 (1973), 131-145. 

5. T. Kato, Perturbation theory for linear operators, Die Grundlehren der math. 
Wissenschaften, Band 132, Springer-Verlag, New York, 1966. Chap. 10. MR 34 #3324. 

6. V. B. Matveev, Invariance principle for generalized wave operators, Theor. Math. 
Phys 8 (1971), 663-667 (translation). 

7. , The invariance principle for generalized wave operators, Problemy Mate 
Fiz., vyp. 5, Izdat. Leningrad. Gos. Univ., Leningrad, 1971, pp. 92-101 = Topics in Math. 
Phys., no. 5, Plenum Press, New York, 1972, pp. 77 -85 . MR 46 #2457. 

8. L. A. Sahnovic, The invariance principle for generalized wave operators, Funkcio-
nal. Anal, i Prilozen. 5 (1971), no. 1, 6 1 - 6 8 = Functional Anal. Appl. 5 (1971), 4 9 - 5 5 . 
MR 44 #849. 

DEPARTMENT OF PHYSICS AND ASTRONOMY, UNIVERSITY OF NEW MEXI­
CO, ALBUQUERQUE, NEW MEXICO 87131 

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF NEW 
MEXICO, ALBUQUERQUE, NEW MEXICO 87131 


