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ON A MEAN VALUE INEQUALITY 
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In this note we discuss a mean value inequality satisfied by functions u(x, i) 

defined in the half space Rn++1 which are solutions of a partial differential equa
tion of semielliptic type. We then apply this result to the study of spaces of non-
isotropic Riesz potentials and to the determination of the classes which arise as 
traces of the functions u(x, t). The justification for considering these functions 
lies in the fact that they are a natural substitute for harmonic functions when 
Laplace's equation is not satisfied and they are related to the study of singular 
integrals with mixed homogeneity. It is a pleasure to acknowledge the conversa
tions we had with Dr. A. P. Calderón concerning these topics. 

The mean value inequality. We let {At}t>0, Ats = AtAs be a continuous 
group of affine transformations of Rn leaving the origin fixed and denote its in
finitesimal generator by P so that t(d/dt)At — PAr We further assume that 
(Px, x) > (x, x) for x G Rn and associate to each group At a translation invariant 
distance function p(x) defined to be the unique value of t such that W"1*! = 1, 
p(0) = 0. To the transpose A * of A t we associate p*(x) in a similar fashion. As 
is well known det At = det Af = ty, y — trace P (see [5, §1.1]). For a = 
(al9 ... , ak), 1 < a. < n, and x1, ... , xk in Rn we let f = x1 ® • • • ® xk to 
be the element with components fa = Tlf=1x

l
a.. For n x n matrices A 1? . . . ,Ak, 

we put (Aj (8) • • • ®Ak)(x
l ® • • • ® xk) = Axx

l ® • • • ®Akx
k and abbrev

iate this by 0 ^ A x when At = A, xl = x for 1 < / < k. 

b = (b/bx1, . . . , d/dxn), d/bt and® fc Ab acting on functions u(xt t) have 
the obvious meaning. We set pk(t, b) =<&kLA*b9 where L2 = (P + P*)/47r. 
Given a function i//(x) we define the dilations \pt(x) = t~y4/(A~1x). A special 
role is played by <pt(x) with if(x) = e-7*1*1 . This particular function ipt(x) satis
fies a differential equation, as is readily seen by taking Fourier transforms, namely 
Aipt(x) = 0 where 

A = I - h ( *̂a'A^ = è ~ YLA*< d> LA&-
We also have Au(x, t) = 0, whenever u{x, i) = f*ipt(x), ƒ G S'(Rn). 

We now state the mean value inequality and give some applications in the 

following sections. 

MEAN VALUE INEQUALITY. Let Au(x, i) = 0 and 0 < r < k, then 
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\Pk(t, d)u(x, t)\« <ct-yf^fp ( x_ y )JP r(s, my.*)\qdydf, 

for 1 < q < ©o. 

Nonisotropic Riesz potentials. (See [1], [3], [7], [12], [18] and [20].) 
For a positive real number a we define the Riesz potential Ia of order a of ƒ by 
means of 

( / « ƒ ) » = P*(xTaf(x), 0 < a < 7 , 

and for 1 < p < <*>, the classes Lp
a(R

n) = {ƒ G I P (R") : ƒ = 7aT?, 77 € I?(/?")} 

andweset | | / | | p > a = |l/llp + IMIp. 
We now consider the following variants of the Littlewood-Paley function to 

express the norm in Lp
a by an equivalent quantity (see [4], [10], [14], [16], [17]). 

Let 

c,(t. „,,„ = [ƒ-ƒ ^ ^ V ' - ^ - r 
q [!oJRn (l+p(x-y)/syx s] 

fox k> l , 0 < a < f c a n d X > 1. 

THEOREM. Let u(x, t) = f^pt(x)\ then fis in L%(Rn) if and only if f is in 
Lp(Rn) and G2(k, a, X, x) is in Lp(Rn), provided X > 2/p, and \\f\\Pf0i « II f\\p + 
\\G2(k, a, X)||p. Moreover, ifq>2and\> q/p, then \\Gq(k, a, X)||p <c | | / | |P f t t , 
and if\ = q/p and p < 2 we have the weak-type inequality 

\{xGR": Gq{k, a, q/p, x) > M}l < c\\/ll£,>p. 

That such weak-type inequalities follow from results in [5, §3.3] was in
dicated to us by N. Aguilera. 

Closely related to these questions are the functions Vt and V% q (see [2], 
[14], [15], [20]) defined as follows: 

^ , frl/fr "JO-/(*)!« , l1,q 

Va(x) = I 1 ày 

q LJ p(y)y+aq J 

^ w = [/Ô ^ {/POO<I "** + ^ > - ^ ) | P * ) * " T ] 1 7 ' 
where 0 < a < 1 and 1 < p, g < °°. 

Indeed we have the following result. 
THEOREM. Let u(x, t) = f^t(x)'9 then for p > 27/(7 4- 2a), 

IIfWp,« ~ H/ïlp + \\V% and \{xGRn:V^x)>n}\<e\\f\fp>J^ 

for p = 27/(7 + 2a). 
^l/so if I <r <q <°°, q > 2 and p > rj/(y 4- or), f/ze^ 
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\W%\\P < *H/Hpf* and \{xER": V%{x) > /i}| < c | | / | | * a / / / \ 

for 1 <p = 77/(7 4- or) < 2. 

Traces of the spaces Ha'p. These results were obtained jointly with A. Ortiz 
and extend the interesting results of [6]. Let 0 < a < 1, 1 < p < «>. We say 
that u(x, t) e Ha>p if Au(x, t) = 0 and 

Then the following holds. 

THEOREM. W(X, t)eH°^p if and only if u(x, t) = ƒ>,(*) , where f e Lfoc(R
n) 

and 

a'*.' /"|{r:^)<r}|i'p(*-,)</0' )*'-

Therefore the spaces of functions/(x) which arise as traces of functions u(x, i) 

in Ha'p are global Lipschitz classes for 0 < a < 1 and BMO for a = 0. 
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