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Let Gv G2 be groups, w a (skew) field, and H a common subgroup of Gt 

and G2. Suppose that the group algebra wGf is embedded in a field Gi and sup­
pose that the fields H1 and//2 generated by wH in Gx and in G2 are ^^-isomor­
phic. In order that the group algebra w(Gx * G2) be embedded in Gx- *__- G2 

(* denotes coproduct ( = free product with amalgamation) of groups and 

rings), it is sufficient that//,, and wGf be linearly disjoint over wH in Gt, i.e., 

that the multiplication map i/f ®WH wGj —• Gt be injective. 

If R is a semifir, then [3, Chapter 7] there is a field U(R), the universal 

field of fractions of R, embedding R such that each automorphism of R extends 

to an automorphism of U(R). If F is a free group, wF is a semifir and has a uni­

versal field of fractions. 

THEOREM 1. Let G = gpU, x, y, . . . , z; R(ty x, y, . . . , z)> be a torsion-

free one-relator group and w a field. Then wG can be embedded in a field G 

with the following property. If S C {t, x, y, . . . , z} and S omits at least one 

letter involved in R, then the subfield gpCS) of G generated by the free group 

algebra ^ (gp^) ) is its universal field of fractions. Further, gp(5) and wG are 

linearly disjoint over ^ (gp^) ) in G. 

SKETCH OF PROOF. Let the complexity of R (which we assume is cyclically 
reduced) be the length of R minus the number of letters involved in R. The 
proof is by induction on the complexity of R. (If R has complexity zero, then G 
is free and G = U(wG) has the required properties [5].) 

CASE 1. R has exponent sum zero on some letter, say t. By the proof of 
the Freiheitssatz [7, §4.4], the normal closure N of {x, y, . . . , z} in G is a tree 
product 

where W0 is a one-relator group whose defining relator is less complex than R, 
A0 j is a free group generated by a proper subset of the generators of NQ, and 

AMS (MOS) subject classifications (1970). Primary 16A26, 20F05; Secondary 16A06, 
16A60. 

Key words and phrases. One-relator groups, group algebras, zero-divisors in group-rings, 
global dimension of group-rings. 

1This research was partially supported by NSF Research Grant 33050. 
9 4 7 Copyright © 1975, American Mathematical Society 



948 JACQUES LEWIN AND TEKLA LEWIN [ September 

Ni = t-iN0t
i,Au+l=t-tA0<1t

i. 
To prove the theorem, we copy this construction with fields. By induction, 

wN0 is embedded in a fieldN0. Choosing copiesNj ofN0 (with the isomorphism 
N0 —+N; ex tending^ —»W/.) and defining Aii+1 accordingly, we form the tree 
of rings 

1 ^ - 1 , 0 U A
0,i

 l 

The colimit R of this system ( = tree product) is [2] a semifir with a universal 

field of fractions N which we can show embeds wN. 

We now extend, via the automorphism induced by conjugation by t, N to a 

field G which embeds wG. 

To complete the proof of the exponent sum zero case, we show that each of 

the usual expressions of TV as a tree product induces a corresponding tree product 

structure inside N. 

CASE 2. Changing notation slightly, assume now that 

G = gp<a, b, . . . , z; R'(a, b, . . . , z)> 

and that R' has nonzero exponent sum on every letter. Let H = G * gp(t). Two 
letters, say a and b, and integers k, I can be found such that if we set x = atk\ 

y = bt!, and R(t, x, y, . . . , z) = R'(xt~k, yt~\ . . . , z), then 

H = gp<r, x9 y, . . . , z;R(t,x, . . . , z)> 

is such that /? has exponent sum zero on t and such that 7V0, obtained as in Case 
1, has a defining relator less complex than R'. We then work with H and find 
that the subfield of// generated by wG is a field with the required properties. D 

COROLLARY. If H is any group such that wH can be embedded in a field 
//, then w(H x G) can be embedded in a field (by choosing w to be H in Theorem 
1). D 

COROLLARY. If A is a commutative domain, then AG is regular, i.e., 

AG ® A AG is a domain. D 

Now write G = F/P, where F is a free group and P is the normal closure of 
the element R. let £ be the augmentation ideal of P in AF. From the universal 
derivation sequence, 

0—• PIP2 -^T(AF;AG,AG) = Sl—>AG ®A AG—> AG-+0, 

[4], [1] we obtain 

THEOREM 2. If A = Z, then £ /£ 2 is a free ZG-bimodule (cf. [6]). 
If A is a PID, then the global dimension of AG is at most 3. 
If A is a field, then the global dimension of AG is at most 2. D 
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Proofs will appear in Communications in Algebra. 
ADDED IN PROOF. The global dimension statements of Theorem 2 also fol­

low from Corollary 4.2 of F. Waldhausen's K-theory of generalized free products 
(mimeographed). 
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