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Let dV(z) be the euclidean measure of C, and let #n > 2 be a natural num-
ber. Put e(z) = exp(m/~1(z + 2)), ¢ = e(1/n), and consider the Hilbert space
H, consisting of all functions ® on C such that ®(¢z) = ®(z) and I®|l < oo, where
the norm is coming from the inner product

(Fp 1) = [ SL@OFD 2P~* av).
Denote by & — ®* the integral linear transformation given by

d*(F) = f POKED 2127 % av(z)

with k(z) = nzlimy_mflz 1< ye(@" w")e(w") dV(z).

Denote furthermore by o = (g, b; ¢, d) an element of G = SL(2, C) for
which (g, b) is the first row and (¢, d) is the second, and define an operator
r,(0) of H, for three types of elements o, = (g, 0; 0, a~ b, 0,=(1,b;0,1),
and 0, = (=c™!, 0;¢, 0) by (7,,(0,)2)®) = lal" "~ V/2®(@%I"s), (r,,(0,)®)(?)
= ®(t)e(bt"), and (r,,(0;)®)(t) = lc[~"*~1/2@*(c=2/"f). Then, it follows from
the results, to be announced in [2] in detail, that r, (0;) extends multiplicatively
to an irreducible unitary representation ¢ — r,(0) of G of class one on H, be-
longing to the supplementary series. If n = 2, then k(z) reduces to e(2z) +
e(—2z), and 0 — r,(0) reduces essentially to a special case of the representation
given in [3].

These results, viewed so to speak from the reverse side, yield as a byproduct
a representation theoretic characterization of a special function. Namely, we
obtain

THEOREM. Up to a constant factor, the function h(t) = tK, /n(21r|t|”)
is the only function in H, which is invariant by all r,(0) with 0 € K = SU(2),
where K ; In is a modified Bessel function.

This Theorem follows from the facts, proved in [2], that A(z) is actually
invariant by all 7, (0), (¢ € K), and that the set of all 7, (0)h(?), (6 €G), is
dense in H,,.
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If n = 2, then A(f) reduces to %e~2™/"1? 5o that the above theorem with
n = 2 is easily derived from, and is practically equivalent to, a special case of
the result in [1, Chapter 1, §8, Theorem 9], which gives a conceptual characteriza-
tion of functions of the type e—*2.
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