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" F " instead of "F g . " Finally the exponents in Lemma 8, p. 190 need some 
fixing up. 

Most of the errors in G2 should not bother the reader. A few that might 
are: p. 96, 111 delete " t k + " ; p. 136 in the diagram, the target of the A 
arrow should be TJk(X, Y) instead of TVD* which it contains; p. 156, 
Theorem 5.1 should begin: "For every sequence of integers 
r!+max(0, dim X-d im Y)i=r2i=-• •"; p. 171, 11 | cj>(x, y) = (x, H(x)y) and 5 Î 
"-» graph ƒ" should read "->(X,{q})'\ 
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H A R O L D LEVINE 

The P(<3>)2 euclidean (quantum) field theory, by Barry Simon, Princeton 
University Press, Princeton, New Jersey, 1974, xx+392 pp., $20.00 

During the last ten years, the mathematical development of quantum field 
theory has proceeded rapidly and in a direction that should be of interest to 
mathematicians working in functional analysis and stochastic processes. The 
presently most active branch of this area of mathematical physics, called 
constructive field theory, has succeeded by a delightful melange of analytical 
techniques in constructing a distinctly nontrivial generalized random process 
which is not Gaussian and has physical interest. The book under review 
presents a detailed account of this work and is substantially lectures given by 
the author at the ETH in Zurich during the Spring of 1973. 
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Quantum fields are operator-valued distributions introduced by theoretical 
physicists over the period 1930-1950 to be a basis for a dynamical theory of 
interactions between the fundamental microscopic particles occurring in 
nature. In addition to linear requirements of causality and special relativity, 
quantum fields must satisfy formal nonlinear partial differential equations 
which are not a priori well defined. It is a fundamental task of the 
mathematical theory to rectify this drawback in a manner that is consistent 
with physical requirements (the so-called renormalization program) and 
investigate the properties of the well-posed theory. A substantial first step 
along this path was the clarification of the mathematical framework by 
Wightman (1956)1 and the subsequent penetrating study of its linear aspects. 
Even though the mathematically rigorous theory was able to contribute 
substantial knowledge and technique for use in theoretical physics, a valid 
nontrivial example was lacking. This would have settled questions concerning 
the internal consistency of this framework as well as suggesting avenues for 
further development. The work in this period 1955-1965 is well accounted in 
the monographs by Streater and Wightman (1964) and Jost (1965). 

After this ''classical" period, the search for examples or models was 
stimulated by Wightman's suggestion (1967) that the difficulties inherent in 
the dynamical models suggested by physicists might be ameliorated by their 
study in space and time dimensions lower than four. In this way a hierarchy of 
models presents itself in which the degree of singularity increases with the 
space dimension. This hierarchy is denoted according to the interaction 
contribution appearing in the formal Hamiltonian operator for the physical 
theory as P(<É>)2, Yukawa2, (^4)s, Yukawa3, (<&%, Yukawa4. The subscript 
stands for the dimension of space and time used in the related formalism and 
P(x) denotes a semibounded polynomial. The use of the Hamiltonian 
operator as generator for a unitary group giving the evolution of the quantum 
field in time away from its noninteracting (free field) values circumvents some 
of the aforementioned difficulties. The issue is now selfadjointness and 
semiboundedness for the Hamiltonian. This task was first surmounted by 
Glimm in 1967 for the Yukawa2 model and without the semiboundedness for 
(<ï>4)3 in 1968. As part of their extensive collaboration, Glimm and Jaffe 
refined and extended these results for Yukawa2 (1970) proving semibounded­
ness for (<ï>4)3 by euclidean techniques in 1973. While these models are 
presently undergoing rapid development let us take up the history of P(<ï>)2. 
This is the least singular model in the hierarchy and provides a complete 
example of Wightman's earlier framework. The semiboundedness for (<ï>4)2 

was established by Nelson (1966) by probabilistic (euclidean) techniques 
which foreshadowed the future analysis of this model. Glimm (1968) ex­
tended this result to the more general P(<I>)2 case. At this point Glimm and 
Jaffe began and carried out a systematic study of this model from 1968 to 
1974, culminating in a verification of spectral properties for the Hamiltonian 

1 Dates are given approximately to emphasize the chronological development of the subject 
and refer to the bibliography in the book under review. 
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with a a4>4+b<î)2-fx<ï>, jui^O, polynomial by Glimm, Jafïe and Spencer (1974). 
In Simon's book the appropriate references in the bibliography are [62]-[74] 
and the discussion in Chapter 10. 

In the course of its development, probabilistic or euclidean techniques 
appeared in the study of the P(4>)2 model with increasing frequency until they 
finally won the day becoming the principal setting for both the formulation of 
the mathematical theory as well as its technical apparatus. It is at this point 
that Simon's book begins the saga for P(0)2 . Within quantum field theory this 
point of view may be traced to Schwinger (1958) and for (<E>4)2 to Symanzik 
(1964) and Nelson (1966). The suggestion that euclidean methods might 
provide a complete basis for quantum field theory rather than a convenient 
technical tool is one of the theses advanced in the book under review. For the 
development of the overall picture, the reader could do no better than the 
introduction to this book. 

It has been known for a long time that scalar free fields may be described as 
Gaussian generalized random processes. These are discussed in considerable 
detail in Chapter 1 along with various notions peculiar to quantum field 
theory such as Wick products and second quantization. The connection 
between the physicist's Fock space and the simultaneous diagonalization of 
time zero free fields realized as multiplication operators on L2(M, JUL) of a 
probability space accounts for the first half of this chapter. The second half is 
concerned with results about doubly Markovian operators (linear, bounded, 
positive operators T on L2(M, JUL) with T1 = T*1 = 1) and hypercontractive 
bounds on second quantized operators (Nelson [131], [135]). For example, any 
doubly Markovian operator is a contraction on Lp(M, JUL) and if A is a 
contraction between two real Hubert spaces, the bound 
| |A | |^ (p- l ) 1 / 2 (q- l ) 1/2, l<p^q<oo , implies the second quantized operator 
r (A) is a contraction from Lp to Lq, these spaces taken over the measure 
space for the underlying Gaussian process indexed by the two Hilbert spaces 
respectively. The bound on A is best possible for the result. These ideas form 
the mathematical basis for analyzing many operators appearing in the study of 
P(<D)2. 

Chapter 2 returns to the mainstream of the Wightman framework with a 
review and then an account of the connection between quantum fields and the 
euclidean ideas of Schwinger. A complete axiomatic equivalence was given by 
Osterwalder and Schrader (1973) by exploiting analytic continuation from 
real time to imaginary time in the linear Wightman program, thereby 
heuristically transforming a hyperbolic problem to an elliptic one. Though the 
author does not work through all details, several simplifications and a 
correction to the original publication may be found. This equivalence 
theorem between the Wightman distributions and euclidean Schwinger 
functions is an important addition to axiomatic quantum field theory. From 
this work one learns that the Schwinger functions are not uniquely defined at 
all values of time and space by the relativistic theory but rather must be 
regularized as distributions on the whole region. The remainder of this 
chapter and the next illustrates these ideas with free fields, particularly basic 
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tools such as the Feynman-Kac-Nelson formula and Nelson's Markov prop­
erty which are used in Chapter 5 to study the P(<1>)2 model. Probabilists will be 
interested in the proof of the Markov property and related aspects. 

In Chapter 4 the transition from the relativistic viewpoint to the euclidean 
one is completed with a presentation of Nelson's euclidean theory over the 
Sobolev space 3if_i. Reconstruction of related quantum fields defined at 
sharp-time is achieved by means of the Osterwalder-Schrader axioms rather 
than verifying the Wightman axioms directly as originally done. Work by the 
author (1973) giving conditions within the relativistic framework which lead 
to a Nelson theory and the interdependence of the various axioms appears at 
an appropriate time. Recent work on this connection has centered on 
constructing Hahn-Banach extensions of the Osterwalder-Schrader 
Schwinger functions satisfying various positivity requirements. Though only 
begun, the thrust of this work is to see if a modification of Nelson's axioms 
exists which establishes a complete equivalence between euclidean and 
relativistic theories. 

Chapter 5 begins the study of P(<ï>)2 within the euclidean framework. The 
Hamiltonian with interaction term localized in space (space cut-off) is defined 
and the key results on selfadjointness and semiboundedness derived, together 
with bounds on its lowest eigenvalue (ground state energy) as a function of the 
cut-off in a form due to Nelson, Glimm and Segal. Uniqueness of the lowest 
eigenstate (ground state) is also true. A variety of important technical 
estimates appear along with the Schwinger functions for finite regions. In 
Chapter 6 the study of the ground state energy is continued, recovering and 
refining many of the basic estimates obtained by Glimm and Jaffe. Euclidean 
methods allow considerable simplification in their derivation due to an 
incisive insight by Nelson on the euclidean symmetry of space and time. The 
emphasis upon a priori estimates such as the behavior of the ground state 
energy as the space cut-off approaches a function identically one on the line 
stems from the control these estimates give when taking the infinite volume 
limit. Chapter 7 covers much the same ground as the previous chapter but 
with a subtle change in boundary conditions. Throughout the analysis of 
P(<ï>)2 an important role is played by the kernel of (-A+m2)"1 in the sense of 
distributions. For an open set A<=R2, Dirichlet boundary conditions are 
obtained from the kernel of (-AA+m2) - 1 where AA is the Friedrichs' extension 
of A. Half-Dirichlet boundary conditions refer to a finite region measure 
constructed from the Gaussian measure for the free field with Dirichlet 
boundary conditions and the region being open, normal and satisfying 
Lp-type growth conditions near the boundary. These boundary conditions 
allow upper and lower bounds for the vacuum energy. 

The last two main chapters, 8 and 9, discuss the main impact of the 
euclidean approach to the P(3>)2 model due to Guerra, Rosen and Simon and 
Nelson (1973-1974). This model allows a discrete approximation by a lattice 
in R2 and very close analogies with the statistical mechanics of lattice systems. 
Chapter 8 brings to bear monotonicity techniques from statistical mechanics 
to show the existence of limits of half-Dirichlet finite region Schwinger 
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functions as the finite region expands to infinity. The resulting expressions 
satisfy the euclidean axioms and hence implicitly define a Wightman field 
theory but without uniqueness. The relativistic sharp time fields are however 
well defined. In Chapter 9, a close analogy is exploited between the lattice 
approximation to a a<ï>44-b<ï>2-/Li<ï> (fi#<I>, a>0) model and the Ising spin 
system. For this case, the half-Dirichlet theory is shown to satisfy spectral 
properties for the infinite region Hamiltonian required by Wightman's 
framework, and thus provides the desired nontrivial model of relativistic 
fields in two dimensional space-time. 

Simon's book certainly provides a valuable and timely addition to the 
mathematical physics literature on quantum field theory. It makes more 
accessible many of the current ideas and techniques to which the author has 
made numerous contributions. Few details are bypassed, so with some 
supplement from the literature it is a good place to learn the subject, 
particularly for mathematicians who wish to short-cut learning unnecessary 
physics. Most enjoyable are Simon's incisive summaries at the beginning of 
each chapter on the thrust of current research and the careful documentation 
of individual results in the large bibliography. The full scope of constructive 
field theory is well represented by this work. 

JOHN L. CHALLIFOUR 

La série génératrice exponentielle dans les problèmes d'enumeration, by 
Dominique Foata, University of Montréal Press, Montreal, 1974, 186 pp., 
$5.00 

These lecture notes contain seven chapters written by Dominique Foata 
and one chapter written by Bernard Kittel. The Foata chapters and the Kittel 
chapter have different notation aand individual reference sections. For this 
reason we shall consider them separately. 

Foata decided to present his lectures in the traditional format of formal 
power series. Thus Foata's presentation essentially follows that of John 
Riordan (An introduction to combinatorial analysis, Wiley, 1958 and Com­
binatorial identities, Wiley, 1968). Therefore the reader would be well advised 
to start with Riordan's books. On the other hand, Foata is able to give more 
recent results since his lecture notes were published six years after Riordan's 
latest book, Combinatorial identities. Foata chose not to use the operator 
theory setting as can be found in the presentation of Ronald Mullin and 
Gian-Carlo Rota (On the foundations of combinatorial theory. Ill: Theory of 
binomial enumeration, Graph Theory and Its Applications (B. Harris, editor), 
Academic Press, 1970). 

Rota and several other authors have been publishing a series of papers 
dealing with the mathematical foundations of enumerative combinatorics. 
Foata's lecture notes also develop these foundations. Four years prior to the 
publication of the lecture notes considered in this review, Dominique Foata 


