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(3) (see p. 425) Electromagnetic interactions are weaker than weak interac­
tions. In the category of misleading proofs, one example will suffice: The 
proof on p. 88 that a representation has a dense subspace of differentiable 
vectors fails to use an approximate identity. 

Despite the errors, Zelobenko's book is a positive contribution because it 
assembles so much useful information. The researcher in Lie groups will want 
to own it. The teacher or student in Lie groups will want to own the excellent 
book by Varadarajan instead. 
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Analyse différentielle, by Valentin Poenaru, Lecture Notes in Mathematics, 
vol. 371, Springer-Verlag, New York, 1974, 228 pp., $7.70 

Stable mappings and their singularities, by M. Golubitsky and V. Guillemin, 
Graduate Texts in Mathematics, vol. 14, Springer-Verlag, New York, 
1973, x+209 pp., $9.50 

Two names dominate the early study of singularities of smooth (C00) maps: 
those of René Thorn and Hassler Whitney. The contents of these books 
essentially consist of expositions of their works and of the outstanding, more 
recent work of John Mather dealing with smooth stability. 

The two books appear in different series published by Springer-Verlag, 
Golubitsky and Guillemin (G2) in the series Graduate texts in mathematics 
and Poenaru (P) in the series Lecture notes in mathematics, and their styles 
reflect that fact. G2 have written a careful, clear textbook, often improving on 
the existing expositions, invariably putting a personal stamp on the material 
discussed and supplying the reader with useful exercises (particularly those in 
later chapters). Their aim is "to present to first and second year graduate 
students a beautiful and relatively accessible field of mathematics—the theory 
of singularities of stable differentiable mappings." The value of P's book, on 
the other hand, is in his having gathered together material from a number of 
sources. His expositions remain quite close to those of his cited sources, but 
he has often included more detail. Gaps that appear in the frequently 
elliptical writing of research publications have been filled in. Some back­
ground material is outlined where needed but for the most part it seems to me 
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that P is aiming his book at the reader who may lack experience but otherwise 
has all the prerequisites to read the original sources. 

In the following paragraphs I will try to give some idea of the contents of 
the two books referring to their chapters as G2-III or P-IVi etc. (i = l, 2 
referring to the semesters into which P is divided.) 

Here manifolds X, Y, etc. will be smooth and compact. I will suppress oo as 
much as possible, so C(X, Y) means the set of smooth (C°°)-maps from X to Y, 
C(X) means C(X, R), T(E) means the set of smooth sections of a bundle E. I 
will use subscripts to denote germs: Gc(X, Y) is the set of germs at x of 
smooth maps from X to Y; Cx,y(X, Y) are those germs at x with value y; 
TX(E) are the germs of sections at x in the base, etc. Given a bundle B with 
base X, Bx will meah the fibre at x ; for the tangent bundle TX, TXX is the fibre 
at x. Throughout d i m X = n and dim Y=p. 

1. The definition of a kth order singularity of a smooth germ f e 
Co,o(Rn, Rp) was given by Thorn as the orbit in Jk(n, p) of the k-jet of ƒ at 0, 
jkf(0). Here Jk(n, p) is just the real vector space of all p-tuples of polynomials 
in n-variables of degree ^ k and /k/(0) is the p-tuple of kth order Taylor 
polynomials at 0 of the component germs of ƒ. The orbit referred to is the one 
produced by the action 

(Diffo Rn x Diffo Rp) x C0,o(Rn, Rp)-^ C0,0(R
n, Rp) 

(Kk^f^kofoh-1 

where the group Diffo Rn is the group of germs of diffeomorphisms at 0 of Rn 

with itself leaving 0 fixed. Since the action thus induced on Jk(n, p) depends 
only on the k-jets of the elements of (Diffo RnxDiff0 Rp), (Lk(n)xLk(p)), the 
orbits in Jk(n, p) are those of the Lie group (Lk(n)xLk(p)). 

In the obvious way, using coordinate systems, one can mimic the preceding 
for smooth maps C(X, Y) and obtain smooth bundles Jk(X, Y) over XxY, 
where the fibre over (x, y), Jk(X, Y)(x,y) is diffeomorphic to Jk(n, p) (via a 
choice of coordinates at x and at y). Also (DiffXxDiffY) operating on 
C(X, Y) induces an action on Jk(X, Y) as above, whose orbits globalize the 
notion of a kth order singularity. These orbits are subbundles of Jk(X, Y). If 
S^Jk(n, p) is any subset invariant under Lk(n)xLk(p), denote by S(X, Y) the 
subbundle of Jk(X, Y) having fibre S (via any—hence all—choices of 
coordinates). 

Given a map f e C(X, Y) define jkf e C(X, Jk(X, Y)) as follows: For each 
x G X, y = /(x) e Y, choose coordinate systems <p e C0,x(R

n, X) and i/f 6 
Co,y(R

p, Y). These coordinate systems define the diffeomorphism 
Jk(X, Y)(x,y)-* Jk(n, p); let jkf(x) be the pre-image of jk(^l°f°c)(0). For any 
subset Wg:Jk(X,Y), let W(/) = (jk/)~1(W). If W=S(X,Y) write S(f) for 
W(f). A map ƒ e C(X, Y) is said to display a singularity S at x if x e S (f). 

The notion of stability appears in the subject immediately if one is 
interested in those properties of mappings which persist under small pertur­
bations. To make sense out of the last phrase means defining a topology on 
C(X, Y). The topology that turns out to be appropriate to this study is the 



874 BOOK REVIEWS [September 

Whitney topology a basis for which is the set of all M(U) for all open 
Uc:Jk(X, Y) and all k, where M(U)={fe C(X, Y)\jkf(X)^U}. (The 
compact-open Whitney topology is the union of the pull backs for all k of the 
compact open topology on C(X, Jk(X, Y)) via j k :C(X, Y)-^C(X, Jk(X, Y)).) 
In all of the special cases studied by Whitney, the maps considered were 
restricted to have some stability in their partial derivative behavior—the 
singularities they displayed did not change when the maps were perturbed a 
little. 

Challenged by Whitney to do it, Thorn proved the transversality theorem 
which conceptually simplified and unified all the known local sufficient 
conditions for this kind of stability. The notion of transversality is a 
generalization of general position. If g G C(N, P) and V is a submanifold of 
P, g is transversal to V if at each x e g ' ^ V ) , Tg(TxN)+Tg(x)V = g(x)P, the 
subspaces Tg(TxN) and Tgix)V are in general position in Tg(x)P. The Thorn 
transversality theorem states: 

If Wis a submanifold ofJk(X, Y), then the setoff e C(X, Y) for which jkf is 
transversal to W is residual in C(X, Y). 

John Mather realized that a condition of transversality that would guaran­
tee stability would have to take into account self-intersections as well as 
intersections of the source manifold with singular submanifolds of the jet 
bundle. To this end he extended the transversality theorem to include the 
right generalization of normal crossings by introducing multijets. Let X(s) be 
the subset of the cartesian product X s of s-tuples of distinct points of X. Let 
a : Jk(X, Y)—»X be the source map, the a-image of a jet over (x, y) is x. Then 
a s : (J k(X, Y) ) S ^X S and define J k (X , Y) = (as)_1(X(s)). Given a map f e 
C(X, Y), define s/

k/=(/k/)s |X ( s ). The multijet transversality theorem is: 
If Wis a submanifold ofsJ

k(X, Y), then the setoffs C(X, Y) such thatsj
kfis 

transversal to W is residual in C(X, Y). 
The background for analysis on manifolds including the above mentioned 

transversality theorems is given in (G2-I and II). Aside from the fact that a 
manifold structure is defined as a special kind of T-structure, these two 
chapters contain no surprises and comprise a carefully written rather com­
plete introduction. They do appeal to outside references for a proof of the 
implicit function theorem and for integration of ordinary differential equa­
tions. However Sard's theorem that the set of critical values of a smooth map 
has measure zero is proved. The Whitney topology is discussed with care. 
They show how this topology differs from the compact open Whitney 
topology for a noncompact source and they prove that C(X, Y) is a Baire 
space in the Whitney topology. The proof given of both versions of the 
transversality theorem is very close to Thorn's original proof but is recast in a 
beautifully transparent form due to J. M. Boardman and John Mather. 

Having the multijet transversality theorem available, G2 prove, with little 
effort, the Whitney embedding theorem and the density theorem of Morse 
functions with distinct critical values. The notes of P contain none of this 
introductory material. 

2. The definition of stability of f e C(X, Y) is that its orbit under the action 



1975] BOOK REVIEWS 875 

of (Diff X)x(Diff Y) be open in C(X, Y). Since the subset of C(X, Y) whose 
s/

k-images are transversal to a submanifold of sJ
k(X, Y) is clearly invariant 

under the action of (Diff X) x (Diff Y), it is immediate from the transversality 
theorem that if ƒ is stable, sj

kf must be transversal to the orbits of all sj
kf(x) for 

all x G X and all integers s and k. It is a strong form of the converse of this fact 
(for a proper ƒ, the transversality of sj

kf for k ^ p = dim Y and s ^ p + 1 , to all its 
orbits implies stability of ƒ) that is a part of stability theorem of John Mather. 
The proof of this theorem yields a number of conditions on ƒ, each of which is 
equivalent to stability. The usual statement is, however, that for a proper map 
f e C(X, Y), ƒ stable is equivalent to f infinitesimally stable. (The properness 
assumption is only relevant for X noncompact.) To define infinitesimal 
stability consider the diagram for the tangent map of ƒ: 

Tf 
TX —^-> TYK 

y \ 

I 
f is infinitesimally stable if given any p e C(X, TY) such that TTY ° p=f, there 
are vector fields £ and T) such that Tf ° £+TJ ° f=p. There is the obvious 
vector space isomorphism between the space of such maps p over ƒ, and the 
sections, T(f*TY). Composing with this isomorphism (Tf °) and (° ƒ) gives 
linear maps ƒ* and ƒ* of sections T(TX) and F(TY) to T(f*TY). Thus 
infinitesimal stability of ƒ is the surjectivity of 

(f* + /*):r(TX)(g>r(TY) -* T(/*TY). 

In their treatment of the stability theorem both G2 and P restrict themselves 
to compact X and Y. After stating the theorem they motivate it as follows: If 
N and P are smooth compact manifolds, C(N, P) is a (Fréchet) manifold 
whose tangent space at g e C(N, P) is just the linear space of smooth sections 
T(g*TP). (The fact that C(N, P) is a Fréchet manifold is proved in G2-III, as 
well as the fact that Diff N is an open subset of C(N, N).) For f e C(X, Y), 
consider the smooth map 

A : (Diff X)x(Diff Y) -* C(X, Y): (h, k) -» k ° ƒ ° h~\ 

The stability theorem is an immediate consequence of: A is open at the 
identity of the group (Diff X)x(Diff Y) iff the tangent map, TA, is surjective 
at that point, surjectivity of TA at the identity being precisely infinitesimal 
stability of ƒ. Thus infinitesimal stability would imply stability if the implicit 
function theorem were true for smooth maps between Fréchet manifolds. 
However such an implicit function theorem is known to be false in general. 

Having motivated the statement of the theorem, G2-III continue with a 
number of examples of classes of stable maps. G2 use the infinitesimal stability 
criterion to check the stability of submersions, Morse functions with distinct 
critical values and immersions with normal crossings. In fact they show that if 
p=dim Y > 2 dim X=2n, then ƒ is stable iff ƒ is a 1:1 immersion and if p = 2n, 
then ƒ is stable iff it is an immersion with normal crossings. The final class G2 
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discuss in III is submersions with folds. These are maps ƒ € C(X, Y) where 
p=dim Y ^ d i m X = n and (rank f ) ^ p - l everywhere. Further by a transver-
sality assumption, Si(/)={x€X|(rank f)(x)=p—1} is a manifold and it is 
further assumed that f\Si(f) is an immersion. They prove that among these 
maps the only stable ones are those ƒ such that f\Si(f) is an immersion with 
normal crossings. All of this last topic is a preview of their discussion of 
Thom-Boardman singularities in G2-VI. 

3. It is in the development of the deep Weierstrass-Malgrange-Mather 
division and preparation theorems and their applications to the proof of 
Mather's stability theorem that the books of G2 and P have their largest 
overlap. 

Only after Thorn convinced him that it had to be true did Malgrange prove a 
division and preparation theorem for smooth functions [M]. Later Mather 
proved a strengthened form of the theorem, adapted for his use in proving the 
stability theorem. 

A typical use of the generalized Malgrange preparation theorem is to 
conclude that a map between spaces of germs is surjective when the 
surjectivity is only known for the corresponding jet spaces; that is, under 
certain circumstances if one can solve functional equations up to a certain 
order, one can solve them. 

In P-Ii Poenaru reproduces Mather's original proof [JM I] and in P-IIi 
follows Malgrange's treatment [M] of various forms of the preparation 
theorem including a useful equivalence between the preparation theorem and 
its formal power-series analog. Since they do not use the global division 
theorem, G2-IV prove only the local version. The proof they give is due to 
Louis Nirenberg [N]. Both P and G2 give the easier proof of the Weierstrass 
division theorem for holomorphic functions as an introduction to and 
motivation for the techniques that follow. They also apply the preparation 
theorem to prove Glaeser's: Any symmetric germ in C0(Rn) is the germ at 0 of 
a smooth function of the elementary symmetric functions. Another application 
given by P is the Whitney theorem that there is a dense set of smooth mappings 
between compact 2-manifolds which at each point of the source has one of three 
coordinate forms : (identity, (x, y); fold, (x, y2); cusp, (x, xy—y3)). The analogous 
discussion of Whitney's theorem is used in G2-VI as part of an introduction to 
the Thom-Boardman singularities. 

4. An appealing geometric condition that G2 in V prove equivalent to 
stability is stability under k -deformations. feC(X,Y) is stable under k-
deformations if given any F e C(XxRk , Y) with F0=f, there is a neighborhood 
of 0, LTçR" and maps GeC(XxR\X) and H e C ( Y x R k , Y) such that: 

Go = idx, Ho = idY, 

Ft = Ht o f o G, for all t e 17. 

(For KeC(AxR\B) write Kt(a) for K(a, t).) 
It is not hard to see by integrating vector fields for one implication and 

using the chain rule for the other that this condition on F is equivalent to: If r 
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is any germ at XxO of a vector field inXxRk with values in Tr*TRk, there is a 
germ at XxO of a vector field X in XxR k with values in 7r*TX, and a germ at 
YxO of a vector field Y in YxRk with values in TT%TY such that 

F*X + (FxidR>0*Y = F*T 

where TT: XxR k ->R k , TTX: X x R k - » X , and TTY: YxR k -» Y are projections. 
Consider the map: 

AF = (F* + (FxidR*)*): To(7r%TX)®T0(7r%TY)^To(F*TY) 

where the subscript 0 means that we are taking germs at XxO or YxO. If we 
restrict to the origin, 0 e R \ this map becomes 

Af = (ƒ* + ƒ*): r ( T X ) 0 r ( T Y ) ^ r ( / * T Y ) 

whose surjectivity is the condition for infinitesimal stability of ƒ. Since it is 
obvious that any smooth section of f*TY is the restriction to XxO of a germ 
at XxO of an F*T for an appropriately chosen F, we see that stability under 
k -deformations implies infinitesimal stability. The fact that the converse is 
true, that AF, restricted to the vector fields on XxO and YxO, is surjective 
implies the surjectivity of AF itself, is a consequence—and a typical one—of a 
global form of the Malgrange preparation theorem. (Actually G2 use only a 
local form and piece things together.) Thus G2 obtain the equivalence of 
infinitesimal stability with stability under k-deformations for all k ^ l . If we 
knew that stability under k-deformations was an open condition then we 
would know that it implied stability as well. By virtue of the above 
equivalence it is enough to show that infinitesimal stability is an open 
condition. This is essentially the route taken by G2 in the first four sections of 
V to produce a new proof that infinitesimal stability implies stability. Their 
proof is a little simpler than Mather's and avoids the use of the global form of 
the division theorem. Following Mather they first show that the global 
condition of infinitesimal stability is equivalent to: 

For any yeY and every subset Sç / _ 1 (y) where S={xu • • •, xk} with 
k ^ l + d i m Y , 

(*) /*(r s (TX))+/*(r , (TY)) = r s(f*TY) 

where the subscripts S, y mean taking germs at S, y. 
The proof of this uses only the compactness of X (or properness of ƒ). Now 

the preparation theorem is used to show that the above germ equation is 
satisfied if it is satisfied modulo functions that vanish on S to order (p+1). 
Thus the global infinitesimal stability condition is equivalent to a condition on 
the (p+l)-jet of the mapping at k^=(p+l) points of the source. Call this 
(p+l)-fold multijet of order (p+1) condition, (*p). It is obvious that it is an 
open condition away from the generalized diagonal in Xk. G2 get over this 
difficulty at the diagonal by a clever use of the equivalence of infinitesimal 
stability and stability under k -deformations for all k. In this way G2 complete 
the proof that infinitesimal stability implies stability. 

Poenaru's proof of this implication in II2 follows the lines of Mather's proof 
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[JM II] closely, simplifying the exposition somewhat. He obtains, as did 
Mather, a stronger result than I have mentioned so far. Namely, if ƒ is 
infinitesimally stable, and if g is close enough to ƒ, then the diffeomorphisms h 
and k such that g = h ° ƒ ° k_1 can be chosen to depend continuously on g. In 
the definition of this strong form of stability on p. 125, Poenaru incorrectly 
requires that the diffeomorphisms h and k depend differentiably on g. The 
words "et differentiable" on p. 125, 3 | should be deleted since such 
dependence is neither proved, referred to, nor used in any way. Since his 
proof makes no appeal to the local (*p)-condition, he needs to use the global 
form of Mather's division theorem. 

The proof that stability implies infinitesimal stability is very speedily 
handled by G2 (in the last two sections of V) since they have the equivalence 
of condition (*p) to infinitesimal stability available. However both books follow 
Mather's argument [JM V] pretty closely. Stability of ƒ implies transversality 
of rj

kf to all orbits of Jk(X, Y) for all r and k and then this transversality is 
translated into (*p). The treatment in P, following the original papers more 
closely, interposes the notion of contact classes (orbits in the jet space of a 
group which properly contains (DiffXxDiff Y)). The computation of the 
tangent spaces to various jet spaces is carried out in P-III2 and the end of the 
proof is given in P-IV2. 

5. The singularities in J\X, Y) are particularly simple in that there are 
only finitely many orbits of (Diff X)x(Diff Y): So, Si, • • •, Sq; q=min(n, p). 
Here Sr is the set of 1-jets of germs whose rank is q-r (i.e. the rank of the 
tangent map at the source of the germ is q-r). G2 prove that the Sr are 
submanifolds and give their codimensions. If one takes f e C(X, Y) with j 1 / 
transversal to all Sr, r=0, • • •, q, one obtains manifolds S r(/)^X The 
singularities of f\Sr(f) are a next natural object of study and the immediate 
question is: Are there submanifolds Sr,s^J2(X, Y) such that if j 1 / is trans­
versal to all Sr, then 

&..(ƒ) = {xe Sr(f) | rank(f | Sr(ƒ))(*) = dim &(ƒ) - s}? 
It is the general problem of this type that J. M. Boardman [B] solved. 

Boardman not only established the existence of such manifolds Si but 
computed their codimensions as well. G2 in VI prove the existence of the 
subbundles Sr,s and compute their codimensions. They do this very neatly, 
introducing for their proofs the intrinsic derivative of Ian Porteous for maps 
between vector bundles. They do not prove the theorem of Boardman for the 
analogous higher order singularities Si nor unfortunately do they give their 
codimensions. 

Now G2 ask: Is a map stable if its jet extensions are transversal to all Si 
simultaneously and which further satisfy the multijet transversality conditions 
that guarantee normal crossing behavior? The converse is obvious because 
the set of maps satisfying such a countable list of transversality conditions is 
residual and the set of stable maps is open. The question is answered 
negatively by showing that the set of stable maps between manifolds both of 
dimension n2, n^3 , is not dense. G2 also give Mather's formulas for the pairs 



1975] BOOK REVIEWS 879 

(n, p) for which stable maps are dense in proper maps from n-manifolds to 
p-manifolds. If one relaxes the requirement of stability by saying that 
ƒ 6 C(X, Y) is C°-stable if any smooth g, sufficiently close to ƒ, can be written 
as k ° ƒ ° h"1 for k and h merely homeomorphisms then the C°-stable maps 
are dense in C(X, Y) for X compact This marvelous theorem of Thorn-
Mather is only mentioned in G2 with reference to a (hopefully) forthcoming 
book of John Mather. 

6. Since global stability of a map is equivalent to a condition at (p+1)-
tuples of points it makes sense to ask if there is a germ form of the stability 
theorem. The germ form of infinitesimal stability is immediate—just interpret 
all maps as germs. To get a notion of a stable germ requires more care. For 
suppose ƒ G C(X, Y) is stable, then surely the germs fx for all x e X should be 
called stable. But if g e C(X, Y) is close to ƒ and if g = h ° ƒ ° k~\ then the 
germ f xGG, yPCY) is equivalent to gx*G C x v(X, Y) where x1 = k(x) and 
y 1 = h(x) . So the definition of stable germs has to allow such shifts in source 
and target of equivalent germs. The appropriate definitions and the germ 
stability theorem are given at the beginning of P-III2. 

Using the fact that germ infinitesimal stability depends only on the 
(p+l)-jet of the germ, one could hope to be able to classify all stable germs by 
constructing some invariant of the (p+l)-jet. Mather did exactly that in [JM 
IV]. Let ƒ G G,y(X, Y) and define 

Q(/) = G(X) / /*m y G(X) and Qk(/) = G(X)/ /*m y G(X) + mx
k+1G(X) 

where mx (resp. my) is the maximal ideal of all germs vanishing at x (resp. y). 
The Mather theorem referred to above is that two stable germs are equivalent 
(via germs in (Diff XxDiff Y)) iff their Qp+1's are isomorphic. This theorem is 
stated in both books without proof. What is proved is that two k-jets of germs 
are contact equivalent iff their Qk's are isomorphic. Here two germs in 
G,y(X, Y) are contact equivalent if there is a diffeomorphism germ belonging 
to a subgroup $fc:Diffxxy(Xx Y) which takes the graph of one germ to that of 
the other. The group 

% = {(<p, if,) G Diffxxy(X x Y) | (x, y) -* (<p(x), i//(x, y)) and ^(x, y) = y} 

is called the contact group. Putting these two results together tells us that a 
stable germ is determined up to equivalence by its (p+l)-jet. 

The general question of when a k-jet of a germ determines the "equiva­
lence" class of the germ is taken up in P-III2. The various notions of 
"equivalence" considered are those induced by the action on G,y(X, Y) of the 
group Öft = DiffxX, ^=Diff yY, s£ = gix£, % just defined above and 
c€={(<p, i//) G 3£|(p=idx}. Thus if G is any one of the above groups one defines 
feCx,y(X, Y) is k G-determined if gGG,y(X, Y) and jkg=jkf imply g is 
G-equivalent to ƒ. Or, ƒ is finitely G-determined if it is k G-determined for 
some k<o°. The theorem of Mather [JM III] that deals with this question is: 

ƒ G G,y(X, Y) is finitely G-determined iff the codimension of the G-orbit of f 
in G,y(X, Y) is finite. 
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The interpretation of the finite codimension statement is: Let the action of 
G on ƒ be denoted by A : G -» Cx,y (X, Y) : g -> g (ƒ ). If we consider the tangent 
map at the identity e e G, we have TA(TcG)ç;Tf(G,y(X, Y))=rx(/*TY). The 
finiteness required by the theorem is that of the codimension of TA(TeG) in 
rx(/*TY). In case G = sd, and ƒ is an infinitesimally stable germ, this 
codimension is zero. In this case the theorem says that stable germs are 
finitely ^-determined. 

G2 in VII obtain other types of results using Q. For example if ƒ G C(X, Y) 
and dimR Q(/x) = r<o°, then the map ƒ near x is no more than r to one. They 
also give a weak global theorem: A map each of whose germs has a finite 
dimensional Q has discrete fibres. 

Given any local ring 0>, G2 define the contact class SgpçJk(X, Y) as the set 
of all k-jets of mapping germs ƒ such that Qk(ƒ)=$>. By the above-mentioned 
theorem, this is a subbundle of Jk(X, Y) whose fibre at (x, y) is a K-orbit. 
They prove that such classes are immersed submanifolds, thus transversality 
to S& makes sense. They begin their study of such classes with the case 
0>=R[t]/(tk+1), calling these contact classes Sik the Morin singularities. They 
show that if jkf is transversal to Sik for all k, then Sik(/) = Si,i,...,i(f) where 
Si,...,i is the Boardman singularity with k ones in the subscript. Using the 
preparation theorem they obtain normal forms for transversal S lk -points 
between manifolds of the same dimension. (These are the only higher order 
singularities that G2 consider.) They derive the normal forms at transversal 
Si-points for mapping of n into (2n-l)-manifolds and finally for all transver­
sal S2-points between equal dimensional manifolds whose Q-ring is a real 
4-dimensional vector space. (This is the lowest possible dimension for Q of 
germs of maps between equal dimensional manifolds at transversal S2-points.) 
G2 finish their book with a characterization of stable maps and germs between 
equal dimensional manifolds both of dimension ^4 . 

7. In the first part of Poenaru's book are found the division and preparation 
theorems in Ii and Hi (which I duscussed in §3) as well as Whitney's extension 
theorem in IIIi, Lojasiewicz's theorem on regularly situated sets in IVi and 
Whitney's spectral synthesis theorem in Vi. The exposition of this sequence of 
topics is essentially that found in Malgrange's book [M], but with many details 
supplied which were omitted from Malgrange's terse treatment. 

Similarly in I2, P has included an expanded version of a short paper of 
Atiyah [A], which gives an application of Hironaka's resolution of sing­
ularities theorem to the problem of division of distributions. The material in 
this chapter is related to P-Vi, however it is more likely that its inclusion 
reflects P's enthusiasm for its contents rather than its compelling connection 
with the preceding chapters. 

8. Aside from a number of minor misprints in P, the most serious one has 
already been mentioned: the required deletion on p. 125, 3 1 of "et 
differentiable." Also the "Remarques (heuristique)" on p. 132, 133 should be 
corrected as follows: FeC°^(ZxI7 C (X, Y)) should be defined by F(g)=Fg 

for g € Z; on p. 132,1 | insert "=A(g)" before "définit"; on p. 133,1 | write 
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" F " instead of "F g . " Finally the exponents in Lemma 8, p. 190 need some 
fixing up. 

Most of the errors in G2 should not bother the reader. A few that might 
are: p. 96, 111 delete " t k + " ; p. 136 in the diagram, the target of the A 
arrow should be TJk(X, Y) instead of TVD* which it contains; p. 156, 
Theorem 5.1 should begin: "For every sequence of integers 
r!+max(0, dim X-d im Y)i=r2i=-• •"; p. 171, 11 | cj>(x, y) = (x, H(x)y) and 5 Î 
"-» graph ƒ" should read "->(X,{q})'\ 
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H A R O L D LEVINE 

The P(<3>)2 euclidean (quantum) field theory, by Barry Simon, Princeton 
University Press, Princeton, New Jersey, 1974, xx+392 pp., $20.00 

During the last ten years, the mathematical development of quantum field 
theory has proceeded rapidly and in a direction that should be of interest to 
mathematicians working in functional analysis and stochastic processes. The 
presently most active branch of this area of mathematical physics, called 
constructive field theory, has succeeded by a delightful melange of analytical 
techniques in constructing a distinctly nontrivial generalized random process 
which is not Gaussian and has physical interest. The book under review 
presents a detailed account of this work and is substantially lectures given by 
the author at the ETH in Zurich during the Spring of 1973. 


