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What kind of answers did I get to the five questions I posed at the beginning 
of this review? Rudin and Berberian both seem handy as references (I have 
used both in the last three months in my own research). Packel is not designed 
for this purpose at all, but is intended as a one semester course for advanced 
undergraduates. I could see it filling that role well if the class were good. Packel 
manages to pack many ideas into a small space by relegating the "general 
cases" of some theorems to the comment section at the end of each chapter 
and omitting others entirely. I fully support this procedure for the purpose 
intended. I believe that many mathematicians working in other fields could 
profitably "read through" Packel and get some useful insight into the 
methods and results of functional analysis. 

Generally speaking the proofs are clear in each of the books. Packel 
makes his proofs clear for bright undergraduates, Rudin's are clear only for 
those who are trained to the Rudin style. His style is to leave items for the 
reader to fill in without saying he is doing so. The missing steps are no 
problem to someone who knows the subject well and is just looking around 
for the best way to prove a particular result. Rudin usually has the best way, 
and he often gets a bit more generality in the bargain. I would not 
recommend this Rudin book for self-study, but I plan to use parts of it in a 
graduate course next year. It is packed so full of nice theorems that anyone 
teaching a graduate analysis course can find something to use. 

Berberian's style is informal; the text is laced with comments and histori­
cal notes (I prefer this to the "appendix for notes" system used by Rudin). 
His proofs are detailed enough for his audience. He is the best of the three 
when it comes to explaining what he is doing and where he is going. Packel 
is a close second while Rudin usually proceeds right to the business of 
writing beautiful proofs. Rudin also features four chapters on distribution 
theory with emphasis on Fourier transforms. While all Rudin's presentations 
are slick, this represents a big jump in that direction compared to other 
treatments I have seen. 

In summary, the book-lover interested in functional analysis could do well 
to buy all three books for his bookshelf. For a quick course try Packel. For a 
year course select Berberian (if you lean toward operator theory) or Rudin 
(if you lean toward harmonic analysis). 

CHARLES A. AKEMANN 

Random sets and integral geometry, by G. Matheron, Wiley, New York, 1975, 
xxiii+261 pp., $18.95 

Geometry, according to Klein, is concerned with the action of a group G on 
a set S, and in particular with those properties of configurations in S which are 
invariant under G. Now it is a common phenomenon that, when G and S 
have some topological structure, there is an essentially unique measure /x on 
S which is invariant under G, and integral geometry is about the integration 
of functions ƒ on S with respect to JUL-
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In a typical problem, the elements of S are geometrical objects (affine 
subspaces, spheres, finite sets of points) in Euclidean space JRd, and G is 
induced on S by a group of linear transformations of Rd. In such a situation 
the measure JUL is usually easy to describe, but methods of great ingenuity are 
needed, and have been devised, to evaluate ƒ ƒ dfx for particular functions ƒ. 
The systematic development of this classical theory owes much to the work of 
Blaschke and his school (see [1] and [10]), but perhaps the most surprising 
results are those of Crofton, whose article [4] in the 1885 edition of the 
Encyclopaedia Britannica was far in advance of its time. 

Much of the early work in integral geometry was motivated by pure 
mathematical curiosity and, for example, by the fact that integrals with 
respect to /m could be made to yield large families of affine invariants of 
convex bodies. But it was soon realised that there are practical problems to 
which the theory is relevant, in which /m describes a 'uniform distribution' 
over S. To be more precise, if JUL has finite total mass, it can be normalised so 
that jui(S)=1, and JUL is then a probability measure invariant under G. Thus we 
can speak of a random geometrical object X, uniformly distributed over S in 
the sense that gX has the same distribution as X for all g in G. In this 
interpretation ƒ fdyb is just the expectation of the random quantity f(X). 

The first example of this situation is that of Buffon's needle (which is 
thrown on a floor ruled with parallel and equally spaced lines, and for which 
the probability of crossing a line is required [2]), but there are many others, 
and some of great practical importance. A useful survey may be found in [6]. 
Despite the many special techniques that are now known, some rather simple 
problems remain unsolved. For instance, Klee [8] has asked for the expected 
volume of the tetrahedron formed by four points chosen at random inside a 
tetrahedron of unit volume. The answer is an absolute constant whose exact 
value is still unknown. (It is known if the tetrahedron is replaced by a sphere, 
as is that of the corresponding problem in Rd for any d [7].) 

The measure JUL is not, however, always totally finite. In the simplest case, 
where S is JRd itself and G is the Euclidean group, /x is of course Lebesgue 
measure and pi(Rd)=o°. Then the natural replacement of the single random 
object X is an infinite collection of such objects forming a 'Poisson process'. 
This idea applies to quite general S ; a Poisson process on S is a random subset 
E of S, such that every subset A of S with ju,(A)<o° contains finitely many 
elements of E, the probability that A contains exactly n elements being 
6~^(AV(A)7n!, and the numbers in disjoint sets A being independent 
random variables. 

Such Poisson processes have both theoretical and practical importance. For 
example, if S is the collection of lines in R2, the corresponding process has 
been used as a model for the fibres making up a sheet of paper. A typical 
function of E might be the area of the polygon containing the origin and 
bounded by the lines of E, and such functions can be integrated by techniques 
which are now well understood (largely because of the work of Miles [9]). But 
of course the Poisson process is only one model for a random subset of S, and 
it may well not fit the facts of a particular application. For this reason there 
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has come in recent years to be more interest in a general theory of random 
sets. 

If H is a random subset of S, the first problem is to describe the stochastic 
structure of H in a compact and convenient way. The usual way of doing this 
for the Poisson and related processes has been through the family of random 
variables N(A), where A runs over a small class of sets chosen so that N(A), 
the cardinality of En A, is finite. It is simple to write down the conditions that 
the joint distributions of this family must satisfy, though technical difficulties 
arise in reversing the process to construct a random set E having a given 
consistent collection of joint distributions. 

The decisive objection to the specification by means of N(-), however, is 
that there are interesting random sets which are sufficiently substantial 
that N(A)=oo with positive probability for the convenient sets A. For this 
reason Kendall (following Davidson) developed in [5] a means of specifying E 
by just noting whether or not E meets a variable set A. It turns out that, if a 
reasonably rich family of sets A is considered, then the stochastic structure of 
E is determined by the set function H(-), where H(A) is the probability that 
HnA is nonempty. Thus, for instance, the Poisson process and that alone has 
H(A) = 1—e_M,(A). As a set function, H is an 'alternating capacity of infinite 
order' in the sense of Choquet [3], and Choquet's results imply that, under 
topological conditions, every such capacity (suitable normalised) comes from 
a random set. 

This result, which is proved under broader and more natural conditions in 
[5], is the starting point of Matheron's book. He sets out to explain Kendall's 
analysis to an audience raised on Bourbaki, but alas without Bourbaki's 
penetrating insight into the essential structure of a particular mathematical 
area. Thus the book begins with an elaborate account of various topologies for 
classes of subsets of Rd, with the aim of deriving the fundamental existence 
theorem from Choquet's results. The resulting subordination of probabilistic 
to topological ideas obscures the simplicity of the basic structure, and is 
bound to make the book less accessible to the nonspecialist. 

For it is clear that the author's intention is not just to expound an elegant 
piece of pure mathematics, but to provide a tool for application to models of 
random sets in the real world. For this he is well served by his experience in 
morphology and stereology, and indeed when the Bourbaki uniform is 
stripped away, there stand revealed some very valuable ideas in this direction. 
The stress on convexity (E is convex if and only if H satisfies a certain 
additivity condition) and on the precise definitions of granulometry and size 
distribution, could well prove influential. But a weakness is the excessive 
reliance on the single function H; in applications there are other functions 
of E (like jLt(En^) as a function of A) which are sometimes likely to be 
more tractable. 

It is good that a book has been written on these subjects. This book has 
been written by an author with a deep knowledge of their theoretical and 
applied aspects, and it is one which the specialist will find valuable and 
stimulating. It would have been possible to write a more readable, a better 
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balanced, and a more widely appealing book, and it is a shame that the 
opportunity has been missed. 
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J. F. C. KINGMAN 

Monotone matrix functions and analytic continuation, by W. F. Donoghue, Jr., 
Springer-Verlag, New York, Heidelberg, Berlin, 1974, 182 pp., $19.70 

In a 1934 article Charles Loewner posed and solved the following problem: 
Characterize the class Pn{a, b) of real-valued functions on the interval (a, b) 
that are monotone matrix functions of order n. This means that whenever A, B 
are n-by-n Hermitian matrices with spectrum in (a, b) and A^B (i.e. A—B is 
positive definite), then f (A)^ / (B) . As usual, f (A) is defined as the Hermitian 
matrix whose eigenvectors are the same as those of A and whose eigenvalues 
are gotten from those of A by applying ƒ. Loewner showed that for n ^ 2 such 
a function is automatically continuously differentiable and, regarded as a 
function from the linear space of n-by-n Hermitian matrices to itself, its 
derivative at A=diag(Ai, • • •, An) sends the matrix (Xjk) to the matrix 
([A,, \k]fXjk), where 

[*, y]/ = 
'<'>-ƒ<*> i f » * y , 

x - y 

[f(x) ifx = y. 
So a necessary and sufficient condition for monotonicity of order n is the 
positive definiteness of the matrix [g, &]ƒ for every choice of £i, • • •, £n e 
(a, b). An equivalent condition is the positive definiteness of [£,, v\k]f for every 
a<£i<T| i<£ 2< • * * <r]n<b; in fact Loewner starts with proving the necessity 


