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1. Introduction. Let X(£l), Y(£l) and Z(12 x 12) be rearrangement invari
ant Banach function spaces, where 12 = (0, °°) with the Lebesgue measure. Let 
M(£2) be the set of measurable functions on 12 and for every k G Z(12 x 12), 
denote by zk the integral operator given by zk(f)(x) = fa k(x, y)f(y)dy for 
/Gitf(!2),jtel2. 

In this paper we shall give necessary and sufficient conditions, in terms of 
the fundamental functions of the spaces (see [2] and [4] ) for zk to be of 
weak type {X, Y} for every k EZ. The methods are similar to those employed 
by O'Neil in his fundamental paper [3]. 

2. The Lorentz A(Z) and Af(Z) spaces. It is well known how to define 
the Lorentz A and M spaces associated with X(12). To extend these definitions 
to Z(12 x 12), we "smash" Z into Z(12), say, via Luxemburg's representation 
theorem [1]. The relationship between the fundamental functions of these 
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spaces is 0z(f, s) = 02(f.s). We define A(Z)(£2 x Q.) to be A^JP' X £2) and 
M(Z)(n x £2) = M^Sl x SI). 

3. Results. Our first theorem is a generalization of a result obtained by 
O'Neil [3, p. 217], where only Orlicz spaces were considered. 

THEOREM 1. Suppose there exists a constant c>0 such that 

(1) s(t>Y{t) < c<t>%($. s) <t>x(s) Vf, s > 0. 

Then we have: 

(0 IW)llM(r) <const||^||M(z)||/||A(Ar)> 

00 M/)llM(r) <conrt||*||A(z)||/||M(JO, 
(iii) M / ) | | A ( r ) <const||fc||A(z)||/||AW. 

THEOREM 2. Suppose that YGU. (See [2] and [4].) Then zk is of 
weak type {X, Y} for every k E M(Z) if and only if condition (1) is verified. 

Finally, using interpolation, we have 

THEOREM 3. If condition (1) is verified, then VA: E A(Z\zk is a 
bounded operator from Aa(X) to A^(7) where ($<a. 

(For the definition and properties of the Aa(X) spaces we refer the 
reader to [2] and [4].) 

Detailed proofs will appear elsewhere. 
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