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QUASI-ANALYTIC VECTORS AND 
QUASI-ANALYTIC FUNCTIONS 

BY PAUL R. CHERNOFF1 

1. Introduction. The theory of quasi-analytic classes is a part of 
function theory that is now over fifty years old. The notion of a quasi-
analytic vector is a relatively recent development in operator theory. My 
purpose here is to discuss the mutual interaction of these ideas, and in 
particular to show how the operator-theoretic point of view leads in a 
natural way to broad and interesting generalizations of some of the classi­
cal results. 

I will begin by recalling some operator theory. Let A be an operator— 
unbounded in general—with domain 2(A) in a Banach space X. A vector 
x is a C00 vector for A if x belongs to @™(A)= f |n=i^(^w)- (Think of 
the example: A = D=differentiation. Then C°° vectors are just C00 func­
tions.) An analytic vector for A is a C00 vector x such that the series 
2*=o (tn/nï)\\Anx\\ has a positive radius of convergence. This is a growth 
condition on \\Anx\\; namely, \\Anx\\1/n=0(n). @a(A) will denote the 
space of analytic vectors for A, 

Analytic vectors were introduced by Nelson in 1959 [15]. Among many 
other things, he proved the following fundamental fact. 

1.1. THEOREM A. Let A be a symmetric operator on a Hubert space H. 
If A has a dense set of analytic vectors, then A is essentially selfadjoint 
(that is, its closure is selfadjoint). 

PROOF. By a well-known theorem of Naïmark, there is an extension 
A0 of A (on a possibly larger Hubert space K^ H) which is selfadjoint. 
Let Ut = exp(itA°) be the one-parameter group generated by A0. 

To show that A is essentially selfadjoint, we must prove that A+i and 
A—i have dense ranges. Suppose that ƒ is orthogonal to the range of A+i. 
Then in particular y is orthogonal to (A+i)@a(A). Then for all x e @>a(A), 
(Ax,y)= —i(x, y). If x e 3)a(A) then Anx e 3)a(A) for all positive integers 
n, and it follows that 

An address delivered at the seven hundred eighteenth meeting of the American 
Mathematical Society in Los Angeles on November 23, 1974, by invitation of the 
Committee to Select Hour Speakers for Far Western Sectional Meetings. 

AMS (MOS) subject classifications (1970). Primary 26A93, 30A78, 47B25, 47D05. 
Key words and phrases. Analytic vector, quasi-analytic vector, quasi-analytic class, 

Denjoy-Carleman theorem, symmetric operator, essential selfadjointness. 
1 Research partially supported by NSF Grant GP-30798X. 

Copyright © American Mathematical Society 1975 

637 



638 P. R. CHERNOFF [July 

(1) (4»x,y) = (-ir(x,y). 
Now define ƒ(*)=(£/**, y)\ ƒ is an analytic function because x is an anal­
ytic vector. Moreover, from (1), 

fW(0) = (inAnx9y) = (x9y) 

for all n. Conclusion: f(t)=(x9y)eK 
But/is bounded on (— oo, oo) because Ut is unitary. Hence (x9 y) must 

be zero. Thus y is orthogonal to 3)a(A)9 and therefore y=0 and A+i has 
dense range. Similarly, A—i has dense range. • 

A key ingredient in the above argument was the fact that two analytic 
functions, all of whose derivatives agree at a point, must coincide. Hada-
mard long ago raised the question of characterizing other classes of 
functions with this property. More precisely, let I be an interval and C a 
subset of C°°(7). C is said to be a quasi-analytic class provided the following 
condition is satisfied: iff geC and x0 e /with Dnf(x0)=Dng(x0) for all n, 
then ƒ=£. Now, a C00 function is analytic provided its successive deri­
vatives satisfy growth restrictions in accordance with Cauchy's estimates. 
It is therefore reasonable to seek less restrictive growth conditions that 
nevertheless imply quasi-analyticity. Accordingly, given a sequence 
{Mn}o° of nonnegative numbers, we define C{Mn} to be the class of all 
C00 functions/on /such that \\Dnf \\o0^XnMn for some X (depending on 

ƒ). C{Mn} is a linear subspace of C°°(/). Hadamard's question received a 
nice answer in the form of the following theorem of Denjoy and Carleman. 
(Actually Denjoy proved a special case, and conjectured the result which 
was ultimately established by Carleman.) 

1.2. DENJOY-CARLEMAN THEOREM. C{Mn} is a quasi-analytic class 
if and only if the least nonincreasing majorant of the series 2n-i M^lfn 

diverges. (If the sequence {MJ? is log convex, i.e. if log Mn is a convex 
function ofn9 this means that the series itself diverges.) 

For a short proof of this theorem, based on ideas of Paley-Wiener, 
see Rudin [18, Chapter 19]. 

There is an interesting relation between quasi-analyticity and the 
question of uniqueness in the classical Hamburger moment problem. 
Briefly, a sequence {ak}k>0 is of the form <**=ƒ"«> *h dp for some positive 
measure [i on the real line—i.e. ak is the kth moment of/*—if and only if 
the sequence is positive definite (j*,i ak+i£k£i=® f° r a^ sequences {f J of 
complex numbers). Carleman used his theory of quasi-analytic classes 
to show that the measure fi is unique provided that the series 2*-i <Ei/2n 

diverges. We shall return to this connection in §3. 

2. Quasi-analytic vectors. In 1965 Nussbaum [15] invented the 
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notion of quasi-analytic vector, guided by Nelson's work and the Denjoy-
Carleman theorem. If A is an operator on X, we call a vector x in £&™(A) 
quasi-analytic for A provided that the least nonincreasing majorant of the 
series 2 Mw*||-1/n diverges. The set of these vectors is denoted by@qa(A). 

It is easy to see that analytic vectors are quasi-analytic: ^a(A)^^qa(A). 
However, 3Jqa(À) is not necessarily a linear space. (It is also worth noting 
that for symmetric operators on Hubert space, the sequence \\Anx\\ is 
log convex. This is not so in general, although there are interesting ine­
qualities connecting the quantities Mnjc||; all this goes back to the 
classical work of Landau and Kolmogoroff [11] for the operator d\dx 
on L°°(fl).) 

An important observation is that if x is quasi-analytic, then so is Ax. 
This follows readily from a little-known inequality of Carleman [2, p. 105] 
which deserves to be better known: for any sequence Ö V ^ 0 , 

n n r n -I 1/2 

(2) 2alv"1/v^2flv + 2 2«vl 
v=2 v=2 L v=2 J 

It follows that 2 Mn1,n diverges if and only if 2 ^n+i diverges; and a 
similar statement holds for the least nonincreasing majorants. Now take 
Mn=\\Anx\\ to conclude that xe@qa(A) implies Ax e@qa(A). 

Nussbaum generalized Nelson's theorem by proving its analogue for 
quasi-analytic vectors : 

2.1. THEOREM QA. Let A be a symmetric operator on Hubert space H. 
Suppose that the set @qa(A) of quasi-analytic vectors has a dense span. Then 
A is essentially selfadjoint. 

Nussbaum's original proof utilized Carleman's work on the classical 
moment problem. However, one can give a proof by simply mimicking 
our proof of Theorem A, making use of the Denjoy-Carleman theorem at 
the crucial point. So in a sense Theorem QA is a "corollary" of the 
Denjoy-Carleman theorem. One can also extend Theorem QA to semi­
group generators in Banach spaces by the same technique; see [3], [8], 
as well as the proof of Theorem 5.3 below. 

3. Some classical corollaries. It is amusing to observe that the suf­
ficiency of the Denjoy-Carleman criterion for quasi-analyticity is actually 
a special case of Theorem QA. Here is a proof of an L2 version. 

3.1. THEOREM. Let f be a C00 function on (—00, 00) such that f or all 
n, Dnf is in L2, and \\Dnf\\2=Mn9 where 2 Mn1/n diverges. Suppose that 
there is a point x0 where Dnf(x0)=0for all n. Then f vanishes identically. 

PROOF. We may suppose that x 0=0. It is enough to prove that ƒ 
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vanishes to the right of 0. Accordingly, consider the operator A=iD 
on H=L2(0, 00), with 3)(A) consisting of those functions g in L2 such 
that g is absolutely continuous, Dg is in L2, and g(0)=0. Note that A 
is symmetric and closed, but not selfadjoint (because e~x is orthogonal 
to the range of A—/). The hypothesis says that/is a quasi-analytic vector 
for ,4. 

A straightforward calculation shows that, for any real k, eikxf(x) is 
also a quasi-analytic vector for A. It follows that L2 (support/) is in the 
closure of the span of @qa(A). Moreover, translates of quasi-analytic 
vectors are quasi-analytic for A. Hence unless/vanishes, 3qa(A) has a 
dense span in H. But this would imply that A is selfadjoint, a contra­
diction. • 

The Z,00 version of the Denjoy-Carleman theorem follows as an easy 
corollary. By using the (C0) semigroup version of Theorem QA to which 
we have already alluded, the same argument applies to the other LP 
norms, l^/?<oo. 

An important observation is that the general argument used above 
applies to many differential operators besides D, and in this way we are 
led to new examples of quasi-analytic classes. Rather than attempting 
to give the most general possible results along these lines, we shall illus­
trate the method with a specific case below, in §6. Related work, but using 
quite different methods, has been carried out by a number of authors 
[1], [4], [10]. 

We can also use Theorem QA to demonstrate Carleman's uniqueness 
condition for the Hamburger moment problem, mentioned at the end of 
§1. 

Thus, let {ajo3 be the moment sequence of a measure [i on (— oo, oo): 
ak= J***, tk dfjiif). Assuming that ]£a^ /2w=oo, we shall prove that \x is 
uniquely determined. 

For this, consider the selfadjoint operator A—multiplication by t 
on L2(R, ju,)=H. Let u be the constant function u(t)=l. Note that 
« 6 ^ ( 4 Also, an=(Anu, w), so a2n=(A2n, u, u)=\\Anu\\2. Thus Carle-
man's condition says that 2 \\Anu\\~1/n=oo9 that is, that u is a quasi-
analytic vector for A. 

Then tn=Anu is also quasi-analytic. It follows that the restriction A1 

of A to 2? (the polynomials in t, i.e., the span of u, Au, A2u, • • •) is 
essentially selfadjoint in Hl9 the closure of 0* in H. It follows that Hx is 
invariant under the one-parameter group etsA. We can now conclude that 
/ / ! = # , i.e., that 0* is dense in L2(R, /J). Indeed, suppose that y e 0L. 
Then for all s, 

0 = (y, eisAu) = \e-isty(i) dp(t). 
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Conclusion: y(t)=0 /j-a.e. 
Now if v is another measure generating the moment sequence {ajo0, 

it follows that the identity on polynomials 0 extends to an isometry of 
L2(R, fji) with L2(R, v), whence v=/u. 

4. Semianalytic and Stieltjes vectors. We say that a vector x e 
2™\A) is a Stieltjes vector for A if the least nonincreasing majorant of the 
series 2 Mn*||"~1/2n diverges. Stieltjes vectors were invented by Nussbaum 
[17] and, independently, by Masson and McClary [14], to whom the 
terminology is due. (The term "Stieltjes vector" was suggested by the 
Stieltjes moment problem, which is the analogue for the half-line of the 
Hamburger moment problem.) In [14], the theory of Stieltjes vectors is 
applied to prove essential selfadjointness of certain Hamiltonian operators 
assisting in quantum field theory. The fundamental theorem is 

4.1. THEOREM S. Let Abe a semibounded symmetric operator on Hubert 
space H. Suppose that the set of Stieltjes vectors 2S(A) has dense span. 
Then A is essentially selfadjoint. 

Note that &(A)^@qa(A), so Theorem S is a strengthening of Theorem 
QA for a more restricted class of operators A. 

In a paper [19] which presented a simplified proof of Theorem 5, 
Simon introduced the related idea of semianalytic vectors, which are to 
Stieltjes vectors what analytic vectors are to quasi-analytic vectors. 
Namely a vector x is semianalytic for A if the series 2*=o (tn/(2ri)ï)\\Anx\\ 
has a positive radius of convergence. We have the corresponding theorem 
(actually a special case of Theorem S). 

4.2. THEOREM SA. Let A be a semibounded symmetric operation on 
Hilbert space H. Suppose that the set of semianalytic vectors @8a(A) is 
dense. Then A is essentially selfadjoint. 

The original proofs of these theorems relied on moment problem tech­
niques. However, they are actually corollaries of Theorems QA and A 
respectively, via an operator-theoretic technique. The basic idea is quite 
simple (for details, see [3]). Without loss of generality, we may assume 
A>I. Consider the operator 

r o ri 
B = i\ 

l - A OJ 
on the Hilbert space K=H1Q)H. Here Hx is the domain of the square 
root of the Friedrichs extension of A ; equivalently, Hx is the completion 
of Q}{A) in the norm ||;c||ï=(,4x, x). It is straightforward to verify that 
B is symmetric, and B is essentially selfadjoint if and only if A is. Moreover 
we can manufacture a supply of analytic (respectively, quasi-analytic) 
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vectors for B from semianalytic (respectively, Stieltjes) vectors for A, 
and in this way we draw the desired conclusions about essential self-
adjointness. 

N.B. One might at first think that the preceding "doubling" technique 
could be iterated to prove a "hemi-semi-analytic vector" theorem. How­
ever, this is not so, because the operator B is no longer semibounded. 

Carleman's sufficient condition for uniqueness in the Stieltjes moment 
problem follows from Theorem S. Suppose that \x is a measure on [0, oo) 
generating the moment sequence {cw}o°:cw= ƒ* tn dp. If %Cn1/2n=<x> 
then [i is uniquely determined. This can be proved by applying Theorem S 
to the operator A of multiplication by t on L2(0, oo). (Note that A is 
semibounded.) The argument is quite similar to the derivation of the 
analogous result for the Hamburger moment problem. 

5. Stieltjes vectors and boundary values of holomorphic functions. 
We shall apply Theorem S to deduce the following variant of a theorem of 
Korenbljum ([12]; also cf. [5], [6]), which describes quasi-analytic classes 
within the class of boundary values of functions holomorphic in a half-
plane. 

5.1. THEOREM. Let f belong to H2(U), where U is the upper half-plane. 
Assume that: 

(i) for all n,f(n\z) e H2(U); 
(ii) for all n, f <n\0)=0; 

(iii) \\f^\\2^Mn9 with 2 Mn1/2w=oo. 
Then f is identically 0. 

PROOF. H\U) is unitarily equivalent to L2(0, oo) via the Fourier 
transform. On L2(0, oo) define an operator A by Ah(t)=th(t), with dense 
domain 

®(A) = \h e Ü\th{t) e L2 and f \ o dt = o). 

It is clear that A is symmetric and positive. But A is not essentially self-
adjoint; indeed, k(t)=(t—i)"1 is obviously orthogonal to the range of A+i. 

Now let ƒ satisfy the hypotheses of the theorem. Let g e L2(0, oo) be 
the Fourier transform off Hypothesis (i) implies that for all n9 t

ng{i) e 
L2(0, oo), while (ii) implies that ƒ* tng(t) dt=0. In other words, g is a 
C00 vector for A. Finally, since \\Ang\\ = || ƒ (n)||, (iii) says that g is a Stieltjes 
vector for A. 

Consider £?, the set of all Stieltjes vectors for A. It is easy to see that 
Sf is closed under right translations. Likewise, Sf is closed under dilation: 
if g G £f and <x>0, the function g(u.i) is in Sf. Accordingly, applying the 
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Fourier transform, S?^H2(U) is invariant under multiplication by all 
functions etXz for A^O, as well as invariant under dilations. 

The closed linear span M of S? is thus an "invariant subspace" of 
H2(U) which is dilation invariant as well. The well-known structure of 
invariant subspaces [18] (either M = 0 or M=q - H2(U) for an essentially 
unique "inner function" q) implies that M=(0) or H2(U) (for q must be 
dilation invariant, hence constant). 

But i f / y o then gj±0 so M=H2(U); that is, ST=9)\A) has dense span, 
so A is essentially selfadjoint by Theorem S. This is a contradiction. • 

5.2. COROLLARY. In the theorem, replace H2(U) by #°°((/), and the 
L2 norms by sup norms. The conclusion remains the same. 

PROOF. Apply the previous theorem to f(z)/(z+i). • 

We can go on to draw operator conclusions from this function— 
theoretic fact; specifically, we can generalize Theorem S from semi-
bounded selfadjoint operators to the broader context of generators of 
holomorphic semigroups. 

5.3. THEOREM. Let A be an operator on a Banach space X. Suppose 
that A has an extension A0 which generates a semigroup exp(tA°)9 uniformly 
bounded in norm for Re t^.0 and holomorphic for Re f>0. Assume that 
the set S>8{A) of Stieltjes vectors of a has dense span. Then A°=Â9 the 
closure of A. 

PROOF. By the Hille-Yosida theorem [9], it is enough to show that the 
range of I-A is dense. Suppose that y e X* annihilates this range. Then, 
for all x e @(A)9 

(<p,Ax) = (<p,x). 

Now suppose that x e @8(A). Consider the function/(0=(ç>, exp(tA°)x); 
ƒ is C00 for Re f ̂ 0 , holomorphic for Re t>0, and all derivatives ƒ (w) are 
uniformly bounded. Moreover, by induction on n, f{n)(0)={<p9 Anx)= 
(<p9x). 

Now consider the function h(t)=er*f{t)—(<p9 x). The function h is 
C00 for Re f ̂ 0 , holomorphic for Re f > 0 , and one can check that A(n)(0)= 
0 for all n; moreover, 

iiD"*ii.^i(")l|Dr/IL-
Now, by work of Kolmogoroff [11] (cf. [13, p. 216]) we have 

Il Vf || „ ^ 2 || ƒ f-'" || D*nrln, O^r^n. 

Hence, for some constants C, C', etc., 
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||D»*|L ^ c | ( ^ llDYll^" = c ( i + l lDyn i iT 

^ C U D Y I L for n large. 

But ||Dn/| |00 = sup|(ç), e x p ( ^ 4 ^ ^ ) | ^ C ' ' M n ; c | | . Since x is a Stieltjes 
vector, it follows that the series 22Li ll^nA||a1/2n diverges. Conclusion: 
A=0, by 5.2. 

T h u s / ( 0 = ( ^ , x)et; that is, 

<(exp(L4°))*<p,*> = <eV,*> 
for all xG^s(v4). Since 3)*(A) has dense span, we deduce that 
(exp(^4°))*9?=e*99. But ||(exp(M0))*ç?|| is uniformly bounded for Re ^ 0 , 
and so we must have (p=0. Thus 7— 4̂ has dense range. • 

An unsatisfactory feature of Theorem 5.3 is the a priori assumption that 
the extension A0 exists. (In the Hubert space context of Theorem S this 
was automatic because of the availability of the Friedrichs extension.) 
Actually, it is not hard to see that we need only the existence of a suitable 
generator A0 extending A on a Banach space Y perhaps properly containing 
l a s a closed subspace. (An analogous situation is discussed in [3, §3].) 
It would be interesting to determine the conditions under which such 
extensions exist. 

Finally, we mention a result of Korenbljum's [12] which generalizes 
Theorem 5.1. Let Sa be a closed sector in the complex plane: 5 a = 
{z:|argzj^a7r}. Suppose t h a t / i s C00 in Sa, holomorphic in the interior 
of Sa, and \\f{n)\\^Mn. Suppose also tha t / ( n ) (0 )=0 for all n. Then if 
the series 2"=i Mn1/{(X+1)n diverges, the function ƒ is identically zero. 
(If oc=0 this reduces to the Denjoy-Carleman theorem, while if <x=l we 
get Theorem 5.1 and its corollary.) Can this be deduced by operator-
theoretic methods from Theorem QA as we deduced Theorem 5.1? In 
any case, Korenbljum's theorem can be applied to semigroups holomor­
phic in Sa, yielding a result analogous to Theorem 5.3. 

6. Quasi-analytic classes and partial differential operators. The 
methods employed in §3 in connection with the Denjoy-Carleman theorem 
can be applied to many ordinary and partial differential operators to 
generate quasi-analytic classes. The Laplacian A in Rd provides a very 
nice illustration. 

6.1. THEOREM. Let f be a C00 function on Rd. Assume that, for all n, 
Anfis in L2, and that 2n=i || An / | |~1 / 2 n= oo. Suppose that all partial deriva­
tives of f vanish at 0. Then f is identically zero. 

PROOF. First suppose that the dimension d^3. Let A be the operator 
—A restricted to the domain 2{A) of C00 functions such that all dériva-
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tives lie in L2 and all vanish at the origin. 3){A) is of course dense, and A 
is symmetric and semibounded. But A is not essentially selfadjoint; 
e.g., one can verify that (1— A)3>(A) is not dense in L2 by Fourier trans­
form techniques. 

The hypothesis says that ƒ is a Stieltjes vector for A. It is easy to check 
that, for all a e Rd, eiaxf(x) is also a Stieltjes vector, so that L2 (support/) 
is contained in the closed span of 3>8(A). Moreover, 3>S(A) is clearly in­
variant under rotations and dilations. Hence, i f / ^ O , 3JS(À) has dense 
span. But this contradicts the fact that A is not essentially selfadjoint. 

In dimensions d higher than 3, we have to modify the preceding argu­
ment slightly, by working on a suitable Sobolev space Hs(Rd) instead of 
L2(Rd)=H°(Rd). Choose s so that d-3<:2s<^d. Since d*z2s it follows that 
&>(A) as defined above is dense in Hs; while since d—3^2s it follows 
that (1 — A)@(A) is not dense, so A is symmetric and semibounded but 
not essentially selfadjoint. Moreover by virtue of the expression of the 
H* norm in terms of the L2 norm of a suitable power of the Laplacian, 
the hypothesis implies that ƒ is a Stieltjes vector for A in H8. The rest of 
the argument goes through as before, with minor technical changes. • 

6.2. COROLLARY Let {Mn}™ be a log convex sequence. Define 
V({Mn}9 A, Rd) to be the class of all C°° functions fon Rd such that Anfe L2 

for all n and || Aw/1|2< MnX
n for some constant X. Suppose that 2 " - i M~1/2n 

diverges. Then this class is quasi-analytic. • 

This result is a significant strengthening of a theorem of Bochner and 
Taylor [1, Theorem 9]. They require ]£n=i MüVn to be divergent. More 
importantly, they conclude that a function ƒ as in the hypothesis of 6.1 
vanishes only under the stronger assumption that all powers of the Lap­
lacian Aw/(x) vanish for all points x in a "determining set" U (i.e., a 
set U^ Rd and that an analytic function which vanishes on U must vanish 
identically). We require that all partials D°f vanish only at a single point. 
(N.B. The example off(x)=x exp(—x2/2) in one dimension shows that 
we must require that all partials vanish at 0, not merely the iterates of A, 
in order to conclude that/==0.) 

It is clear that the Laplacian could be replaced by any of a wide variety 
of elliptic operators. 
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